Solve for j
j=\frac{2\sqrt{2}}{3}\approx 0.942809042
j=-\frac{2\sqrt{2}}{3}\approx -0.942809042
Share
Copied to clipboard
-9j^{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
j^{2}=\frac{-8}{-9}
Divide both sides by -9.
j^{2}=\frac{8}{9}
Fraction \frac{-8}{-9} can be simplified to \frac{8}{9} by removing the negative sign from both the numerator and the denominator.
j=\frac{2\sqrt{2}}{3} j=-\frac{2\sqrt{2}}{3}
Take the square root of both sides of the equation.
-9j^{2}+8=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
j=\frac{0±\sqrt{0^{2}-4\left(-9\right)\times 8}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 0 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
j=\frac{0±\sqrt{-4\left(-9\right)\times 8}}{2\left(-9\right)}
Square 0.
j=\frac{0±\sqrt{36\times 8}}{2\left(-9\right)}
Multiply -4 times -9.
j=\frac{0±\sqrt{288}}{2\left(-9\right)}
Multiply 36 times 8.
j=\frac{0±12\sqrt{2}}{2\left(-9\right)}
Take the square root of 288.
j=\frac{0±12\sqrt{2}}{-18}
Multiply 2 times -9.
j=-\frac{2\sqrt{2}}{3}
Now solve the equation j=\frac{0±12\sqrt{2}}{-18} when ± is plus.
j=\frac{2\sqrt{2}}{3}
Now solve the equation j=\frac{0±12\sqrt{2}}{-18} when ± is minus.
j=-\frac{2\sqrt{2}}{3} j=\frac{2\sqrt{2}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}