Solve for k
k=9
k=-9
Share
Copied to clipboard
-7k^{2}=-576+9
Add 9 to both sides.
-7k^{2}=-567
Add -576 and 9 to get -567.
k^{2}=\frac{-567}{-7}
Divide both sides by -7.
k^{2}=81
Divide -567 by -7 to get 81.
k=9 k=-9
Take the square root of both sides of the equation.
-9-7k^{2}+576=0
Add 576 to both sides.
567-7k^{2}=0
Add -9 and 576 to get 567.
-7k^{2}+567=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\left(-7\right)\times 567}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 0 for b, and 567 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-7\right)\times 567}}{2\left(-7\right)}
Square 0.
k=\frac{0±\sqrt{28\times 567}}{2\left(-7\right)}
Multiply -4 times -7.
k=\frac{0±\sqrt{15876}}{2\left(-7\right)}
Multiply 28 times 567.
k=\frac{0±126}{2\left(-7\right)}
Take the square root of 15876.
k=\frac{0±126}{-14}
Multiply 2 times -7.
k=-9
Now solve the equation k=\frac{0±126}{-14} when ± is plus. Divide 126 by -14.
k=9
Now solve the equation k=\frac{0±126}{-14} when ± is minus. Divide -126 by -14.
k=-9 k=9
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}