Solve for c
c=0
Share
Copied to clipboard
-9+45c=-\left(-9c+9\right)
Use the distributive property to multiply -9 by 1-5c.
-9+45c=-\left(-9c\right)-9
To find the opposite of -9c+9, find the opposite of each term.
-9+45c=9c-9
The opposite of -9c is 9c.
-9+45c-9c=-9
Subtract 9c from both sides.
-9+36c=-9
Combine 45c and -9c to get 36c.
36c=-9+9
Add 9 to both sides.
36c=0
Add -9 and 9 to get 0.
c=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 36 is not equal to 0, c must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}