Solve for x
x\leq \frac{4}{15}
Graph
Share
Copied to clipboard
-8x-24-4x+10\geq -2\left(x+4\right)+5x-10
Use the distributive property to multiply -8 by x+3.
-12x-24+10\geq -2\left(x+4\right)+5x-10
Combine -8x and -4x to get -12x.
-12x-14\geq -2\left(x+4\right)+5x-10
Add -24 and 10 to get -14.
-12x-14\geq -2x-8+5x-10
Use the distributive property to multiply -2 by x+4.
-12x-14\geq 3x-8-10
Combine -2x and 5x to get 3x.
-12x-14\geq 3x-18
Subtract 10 from -8 to get -18.
-12x-14-3x\geq -18
Subtract 3x from both sides.
-15x-14\geq -18
Combine -12x and -3x to get -15x.
-15x\geq -18+14
Add 14 to both sides.
-15x\geq -4
Add -18 and 14 to get -4.
x\leq \frac{-4}{-15}
Divide both sides by -15. Since -15 is negative, the inequality direction is changed.
x\leq \frac{4}{15}
Fraction \frac{-4}{-15} can be simplified to \frac{4}{15} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}