Solve for x
x=-\frac{15}{31}\approx -0.483870968
Graph
Share
Copied to clipboard
40x+16=6x-\left(-x-7\right)-2\left(-x+3\right)
Use the distributive property to multiply -8 by -5x-2.
40x+16=6x-\left(-x\right)-\left(-7\right)-2\left(-x+3\right)
To find the opposite of -x-7, find the opposite of each term.
40x+16=6x-\left(-x\right)+7-2\left(-x+3\right)
The opposite of -7 is 7.
40x+16=6x-\left(-x\right)+7-2\left(-x\right)-6
Use the distributive property to multiply -2 by -x+3.
40x+16=6x-\left(-x\right)+7+2x-6
Multiply -2 and -1 to get 2.
40x+16=8x-\left(-x\right)+7-6
Combine 6x and 2x to get 8x.
40x+16=8x-\left(-x\right)+1
Subtract 6 from 7 to get 1.
40x+16-8x=-\left(-x\right)+1
Subtract 8x from both sides.
32x+16=-\left(-x\right)+1
Combine 40x and -8x to get 32x.
32x+16-x=1
Add -x to both sides.
32x-x=1-16
Subtract 16 from both sides.
32x-x=-15
Subtract 16 from 1 to get -15.
31x=-15
Combine 32x and -x to get 31x.
x=\frac{-15}{31}
Divide both sides by 31.
x=-\frac{15}{31}
Fraction \frac{-15}{31} can be rewritten as -\frac{15}{31} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}