Solve for y, x
x=-\frac{10}{21}\approx -0.476190476
y = -\frac{24}{7} = -3\frac{3}{7} \approx -3.428571429
Graph
Share
Copied to clipboard
y=-\frac{24}{7}
Consider the first equation. Divide both sides by -7.
9x=3\left(-\frac{24}{7}\right)+6
Consider the second equation. Insert the known values of variables into the equation.
9x=-\frac{72}{7}+6
Multiply 3 and -\frac{24}{7} to get -\frac{72}{7}.
9x=-\frac{30}{7}
Add -\frac{72}{7} and 6 to get -\frac{30}{7}.
x=\frac{-\frac{30}{7}}{9}
Divide both sides by 9.
x=\frac{-30}{7\times 9}
Express \frac{-\frac{30}{7}}{9} as a single fraction.
x=\frac{-30}{63}
Multiply 7 and 9 to get 63.
x=-\frac{10}{21}
Reduce the fraction \frac{-30}{63} to lowest terms by extracting and canceling out 3.
y=-\frac{24}{7} x=-\frac{10}{21}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}