Solve for x
x=\frac{39}{68}\approx 0.573529412
Graph
Share
Copied to clipboard
-7x+\frac{5}{2}+\frac{1}{5}x=-\frac{7}{5}
Add \frac{1}{5}x to both sides.
-\frac{34}{5}x+\frac{5}{2}=-\frac{7}{5}
Combine -7x and \frac{1}{5}x to get -\frac{34}{5}x.
-\frac{34}{5}x=-\frac{7}{5}-\frac{5}{2}
Subtract \frac{5}{2} from both sides.
-\frac{34}{5}x=-\frac{14}{10}-\frac{25}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{7}{5} and \frac{5}{2} to fractions with denominator 10.
-\frac{34}{5}x=\frac{-14-25}{10}
Since -\frac{14}{10} and \frac{25}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{34}{5}x=-\frac{39}{10}
Subtract 25 from -14 to get -39.
x=-\frac{39}{10}\left(-\frac{5}{34}\right)
Multiply both sides by -\frac{5}{34}, the reciprocal of -\frac{34}{5}.
x=\frac{-39\left(-5\right)}{10\times 34}
Multiply -\frac{39}{10} times -\frac{5}{34} by multiplying numerator times numerator and denominator times denominator.
x=\frac{195}{340}
Do the multiplications in the fraction \frac{-39\left(-5\right)}{10\times 34}.
x=\frac{39}{68}
Reduce the fraction \frac{195}{340} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}