Solve for m
m=\frac{7\left(n-18\right)}{3}
Solve for n
n=\frac{3\left(m+42\right)}{7}
Share
Copied to clipboard
-7n+3m=-14\times 9
Multiply 7 and -2 to get -14.
-7n+3m=-126
Multiply -14 and 9 to get -126.
3m=-126+7n
Add 7n to both sides.
3m=7n-126
The equation is in standard form.
\frac{3m}{3}=\frac{7n-126}{3}
Divide both sides by 3.
m=\frac{7n-126}{3}
Dividing by 3 undoes the multiplication by 3.
m=\frac{7n}{3}-42
Divide -126+7n by 3.
-7n+3m=-14\times 9
Multiply 7 and -2 to get -14.
-7n+3m=-126
Multiply -14 and 9 to get -126.
-7n=-126-3m
Subtract 3m from both sides.
-7n=-3m-126
The equation is in standard form.
\frac{-7n}{-7}=\frac{-3m-126}{-7}
Divide both sides by -7.
n=\frac{-3m-126}{-7}
Dividing by -7 undoes the multiplication by -7.
n=\frac{3m}{7}+18
Divide -126-3m by -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}