Factor
\left(2-R\right)\left(7R-6\right)
Evaluate
\left(2-R\right)\left(7R-6\right)
Share
Copied to clipboard
a+b=20 ab=-7\left(-12\right)=84
Factor the expression by grouping. First, the expression needs to be rewritten as -7R^{2}+aR+bR-12. To find a and b, set up a system to be solved.
1,84 2,42 3,28 4,21 6,14 7,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 84.
1+84=85 2+42=44 3+28=31 4+21=25 6+14=20 7+12=19
Calculate the sum for each pair.
a=14 b=6
The solution is the pair that gives sum 20.
\left(-7R^{2}+14R\right)+\left(6R-12\right)
Rewrite -7R^{2}+20R-12 as \left(-7R^{2}+14R\right)+\left(6R-12\right).
7R\left(-R+2\right)-6\left(-R+2\right)
Factor out 7R in the first and -6 in the second group.
\left(-R+2\right)\left(7R-6\right)
Factor out common term -R+2 by using distributive property.
-7R^{2}+20R-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
R=\frac{-20±\sqrt{20^{2}-4\left(-7\right)\left(-12\right)}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
R=\frac{-20±\sqrt{400-4\left(-7\right)\left(-12\right)}}{2\left(-7\right)}
Square 20.
R=\frac{-20±\sqrt{400+28\left(-12\right)}}{2\left(-7\right)}
Multiply -4 times -7.
R=\frac{-20±\sqrt{400-336}}{2\left(-7\right)}
Multiply 28 times -12.
R=\frac{-20±\sqrt{64}}{2\left(-7\right)}
Add 400 to -336.
R=\frac{-20±8}{2\left(-7\right)}
Take the square root of 64.
R=\frac{-20±8}{-14}
Multiply 2 times -7.
R=-\frac{12}{-14}
Now solve the equation R=\frac{-20±8}{-14} when ± is plus. Add -20 to 8.
R=\frac{6}{7}
Reduce the fraction \frac{-12}{-14} to lowest terms by extracting and canceling out 2.
R=-\frac{28}{-14}
Now solve the equation R=\frac{-20±8}{-14} when ± is minus. Subtract 8 from -20.
R=2
Divide -28 by -14.
-7R^{2}+20R-12=-7\left(R-\frac{6}{7}\right)\left(R-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{6}{7} for x_{1} and 2 for x_{2}.
-7R^{2}+20R-12=-7\times \frac{-7R+6}{-7}\left(R-2\right)
Subtract \frac{6}{7} from R by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-7R^{2}+20R-12=\left(-7R+6\right)\left(R-2\right)
Cancel out 7, the greatest common factor in -7 and 7.
x ^ 2 -\frac{20}{7}x +\frac{12}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{20}{7} rs = \frac{12}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{10}{7} - u s = \frac{10}{7} + u
Two numbers r and s sum up to \frac{20}{7} exactly when the average of the two numbers is \frac{1}{2}*\frac{20}{7} = \frac{10}{7}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{10}{7} - u) (\frac{10}{7} + u) = \frac{12}{7}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{12}{7}
\frac{100}{49} - u^2 = \frac{12}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{12}{7}-\frac{100}{49} = -\frac{16}{49}
Simplify the expression by subtracting \frac{100}{49} on both sides
u^2 = \frac{16}{49} u = \pm\sqrt{\frac{16}{49}} = \pm \frac{4}{7}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{10}{7} - \frac{4}{7} = 0.857 s = \frac{10}{7} + \frac{4}{7} = 2
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}