Solve for b
b=-\frac{k}{k+7}
k\neq 0\text{ and }k\neq -7
Solve for k
k=-\frac{7b}{b+1}
b\neq -1\text{ and }b\neq 0
Share
Copied to clipboard
b\left(-7\right)-kb=k
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
\left(-7-k\right)b=k
Combine all terms containing b.
\left(-k-7\right)b=k
The equation is in standard form.
\frac{\left(-k-7\right)b}{-k-7}=\frac{k}{-k-7}
Divide both sides by -7-k.
b=\frac{k}{-k-7}
Dividing by -7-k undoes the multiplication by -7-k.
b=-\frac{k}{k+7}
Divide k by -7-k.
b=-\frac{k}{k+7}\text{, }b\neq 0
Variable b cannot be equal to 0.
b\left(-7\right)-kb=k
Multiply both sides of the equation by b.
b\left(-7\right)-kb-k=0
Subtract k from both sides.
-kb-k=-b\left(-7\right)
Subtract b\left(-7\right) from both sides. Anything subtracted from zero gives its negation.
-kb-k=7b
Multiply -1 and -7 to get 7.
\left(-b-1\right)k=7b
Combine all terms containing k.
\frac{\left(-b-1\right)k}{-b-1}=\frac{7b}{-b-1}
Divide both sides by -1-b.
k=\frac{7b}{-b-1}
Dividing by -1-b undoes the multiplication by -1-b.
k=-\frac{7b}{b+1}
Divide 7b by -1-b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}