- 7 = - \frac { 15 } { 5,5 } \cdot 2,5 + b
Solve for b
b=-\frac{2}{11}\approx -0,181818182
Share
Copied to clipboard
-7=\left(-\frac{150}{55}\right)\times 2,5+b
Expand \frac{15}{5,5} by multiplying both numerator and the denominator by 10.
-7=-\frac{30}{11}\times 2,5+b
Reduce the fraction \frac{150}{55} to lowest terms by extracting and canceling out 5.
-7=-\frac{30}{11}\times \frac{5}{2}+b
Convert decimal number 2,5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
-7=\frac{-30\times 5}{11\times 2}+b
Multiply -\frac{30}{11} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-7=\frac{-150}{22}+b
Do the multiplications in the fraction \frac{-30\times 5}{11\times 2}.
-7=-\frac{75}{11}+b
Reduce the fraction \frac{-150}{22} to lowest terms by extracting and canceling out 2.
-\frac{75}{11}+b=-7
Swap sides so that all variable terms are on the left hand side.
b=-7+\frac{75}{11}
Add \frac{75}{11} to both sides.
b=-\frac{77}{11}+\frac{75}{11}
Convert -7 to fraction -\frac{77}{11}.
b=\frac{-77+75}{11}
Since -\frac{77}{11} and \frac{75}{11} have the same denominator, add them by adding their numerators.
b=-\frac{2}{11}
Add -77 and 75 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}