Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-4x-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 8\left(-7\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 8\left(-7\right)}}{2\times 8}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-32\left(-7\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-4\right)±\sqrt{16+224}}{2\times 8}
Multiply -32 times -7.
x=\frac{-\left(-4\right)±\sqrt{240}}{2\times 8}
Add 16 to 224.
x=\frac{-\left(-4\right)±4\sqrt{15}}{2\times 8}
Take the square root of 240.
x=\frac{4±4\sqrt{15}}{2\times 8}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{15}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{15}+4}{16}
Now solve the equation x=\frac{4±4\sqrt{15}}{16} when ± is plus. Add 4 to 4\sqrt{15}.
x=\frac{\sqrt{15}+1}{4}
Divide 4+4\sqrt{15} by 16.
x=\frac{4-4\sqrt{15}}{16}
Now solve the equation x=\frac{4±4\sqrt{15}}{16} when ± is minus. Subtract 4\sqrt{15} from 4.
x=\frac{1-\sqrt{15}}{4}
Divide 4-4\sqrt{15} by 16.
8x^{2}-4x-7=8\left(x-\frac{\sqrt{15}+1}{4}\right)\left(x-\frac{1-\sqrt{15}}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1+\sqrt{15}}{4} for x_{1} and \frac{1-\sqrt{15}}{4} for x_{2}.