Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-64x-64
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-64 ab=9\left(-64\right)=-576
Factor the expression by grouping. First, the expression needs to be rewritten as 9x^{2}+ax+bx-64. To find a and b, set up a system to be solved.
1,-576 2,-288 3,-192 4,-144 6,-96 8,-72 9,-64 12,-48 16,-36 18,-32 24,-24
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -576.
1-576=-575 2-288=-286 3-192=-189 4-144=-140 6-96=-90 8-72=-64 9-64=-55 12-48=-36 16-36=-20 18-32=-14 24-24=0
Calculate the sum for each pair.
a=-72 b=8
The solution is the pair that gives sum -64.
\left(9x^{2}-72x\right)+\left(8x-64\right)
Rewrite 9x^{2}-64x-64 as \left(9x^{2}-72x\right)+\left(8x-64\right).
9x\left(x-8\right)+8\left(x-8\right)
Factor out 9x in the first and 8 in the second group.
\left(x-8\right)\left(9x+8\right)
Factor out common term x-8 by using distributive property.
9x^{2}-64x-64=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 9\left(-64\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 9\left(-64\right)}}{2\times 9}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096-36\left(-64\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-64\right)±\sqrt{4096+2304}}{2\times 9}
Multiply -36 times -64.
x=\frac{-\left(-64\right)±\sqrt{6400}}{2\times 9}
Add 4096 to 2304.
x=\frac{-\left(-64\right)±80}{2\times 9}
Take the square root of 6400.
x=\frac{64±80}{2\times 9}
The opposite of -64 is 64.
x=\frac{64±80}{18}
Multiply 2 times 9.
x=\frac{144}{18}
Now solve the equation x=\frac{64±80}{18} when ± is plus. Add 64 to 80.
x=8
Divide 144 by 18.
x=-\frac{16}{18}
Now solve the equation x=\frac{64±80}{18} when ± is minus. Subtract 80 from 64.
x=-\frac{8}{9}
Reduce the fraction \frac{-16}{18} to lowest terms by extracting and canceling out 2.
9x^{2}-64x-64=9\left(x-8\right)\left(x-\left(-\frac{8}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8 for x_{1} and -\frac{8}{9} for x_{2}.
9x^{2}-64x-64=9\left(x-8\right)\left(x+\frac{8}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9x^{2}-64x-64=9\left(x-8\right)\times \frac{9x+8}{9}
Add \frac{8}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9x^{2}-64x-64=\left(x-8\right)\left(9x+8\right)
Cancel out 9, the greatest common factor in 9 and 9.