Solve for x
x = \frac{\sqrt{32626729} - 4933}{600} \approx 1.298301967
x=\frac{-\sqrt{32626729}-4933}{600}\approx -17.7416353
Graph
Share
Copied to clipboard
-6000x^{2}-98660x+138204=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-98660\right)±\sqrt{\left(-98660\right)^{2}-4\left(-6000\right)\times 138204}}{2\left(-6000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6000 for a, -98660 for b, and 138204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-98660\right)±\sqrt{9733795600-4\left(-6000\right)\times 138204}}{2\left(-6000\right)}
Square -98660.
x=\frac{-\left(-98660\right)±\sqrt{9733795600+24000\times 138204}}{2\left(-6000\right)}
Multiply -4 times -6000.
x=\frac{-\left(-98660\right)±\sqrt{9733795600+3316896000}}{2\left(-6000\right)}
Multiply 24000 times 138204.
x=\frac{-\left(-98660\right)±\sqrt{13050691600}}{2\left(-6000\right)}
Add 9733795600 to 3316896000.
x=\frac{-\left(-98660\right)±20\sqrt{32626729}}{2\left(-6000\right)}
Take the square root of 13050691600.
x=\frac{98660±20\sqrt{32626729}}{2\left(-6000\right)}
The opposite of -98660 is 98660.
x=\frac{98660±20\sqrt{32626729}}{-12000}
Multiply 2 times -6000.
x=\frac{20\sqrt{32626729}+98660}{-12000}
Now solve the equation x=\frac{98660±20\sqrt{32626729}}{-12000} when ± is plus. Add 98660 to 20\sqrt{32626729}.
x=\frac{-\sqrt{32626729}-4933}{600}
Divide 98660+20\sqrt{32626729} by -12000.
x=\frac{98660-20\sqrt{32626729}}{-12000}
Now solve the equation x=\frac{98660±20\sqrt{32626729}}{-12000} when ± is minus. Subtract 20\sqrt{32626729} from 98660.
x=\frac{\sqrt{32626729}-4933}{600}
Divide 98660-20\sqrt{32626729} by -12000.
x=\frac{-\sqrt{32626729}-4933}{600} x=\frac{\sqrt{32626729}-4933}{600}
The equation is now solved.
-6000x^{2}-98660x+138204=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-6000x^{2}-98660x+138204-138204=-138204
Subtract 138204 from both sides of the equation.
-6000x^{2}-98660x=-138204
Subtracting 138204 from itself leaves 0.
\frac{-6000x^{2}-98660x}{-6000}=-\frac{138204}{-6000}
Divide both sides by -6000.
x^{2}+\left(-\frac{98660}{-6000}\right)x=-\frac{138204}{-6000}
Dividing by -6000 undoes the multiplication by -6000.
x^{2}+\frac{4933}{300}x=-\frac{138204}{-6000}
Reduce the fraction \frac{-98660}{-6000} to lowest terms by extracting and canceling out 20.
x^{2}+\frac{4933}{300}x=\frac{11517}{500}
Reduce the fraction \frac{-138204}{-6000} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{4933}{300}x+\left(\frac{4933}{600}\right)^{2}=\frac{11517}{500}+\left(\frac{4933}{600}\right)^{2}
Divide \frac{4933}{300}, the coefficient of the x term, by 2 to get \frac{4933}{600}. Then add the square of \frac{4933}{600} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4933}{300}x+\frac{24334489}{360000}=\frac{11517}{500}+\frac{24334489}{360000}
Square \frac{4933}{600} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4933}{300}x+\frac{24334489}{360000}=\frac{32626729}{360000}
Add \frac{11517}{500} to \frac{24334489}{360000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4933}{600}\right)^{2}=\frac{32626729}{360000}
Factor x^{2}+\frac{4933}{300}x+\frac{24334489}{360000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4933}{600}\right)^{2}}=\sqrt{\frac{32626729}{360000}}
Take the square root of both sides of the equation.
x+\frac{4933}{600}=\frac{\sqrt{32626729}}{600} x+\frac{4933}{600}=-\frac{\sqrt{32626729}}{600}
Simplify.
x=\frac{\sqrt{32626729}-4933}{600} x=\frac{-\sqrt{32626729}-4933}{600}
Subtract \frac{4933}{600} from both sides of the equation.
x ^ 2 +\frac{4933}{300}x -\frac{11517}{500} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{4933}{300} rs = -\frac{11517}{500}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{4933}{600} - u s = -\frac{4933}{600} + u
Two numbers r and s sum up to -\frac{4933}{300} exactly when the average of the two numbers is \frac{1}{2}*-\frac{4933}{300} = -\frac{4933}{600}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{4933}{600} - u) (-\frac{4933}{600} + u) = -\frac{11517}{500}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{11517}{500}
\frac{71491313}{9000000} - u^2 = -\frac{11517}{500}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{11517}{500}-\frac{71491313}{9000000} = -\frac{10361857}{9000000}
Simplify the expression by subtracting \frac{71491313}{9000000} on both sides
u^2 = \frac{10361857}{9000000} u = \pm\sqrt{\frac{10361857}{9000000}} = \pm \frac{\sqrt{10361857}}{3000}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{4933}{600} - \frac{\sqrt{10361857}}{3000} = -17.742 s = -\frac{4933}{600} + \frac{\sqrt{10361857}}{3000} = 1.298
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}