Solve for y
y=-\frac{5}{81}\approx -0.061728395
Graph
Share
Copied to clipboard
-6y-\frac{5}{3}-\frac{3}{4}y=-\frac{5}{4}
Subtract \frac{3}{4}y from both sides.
-\frac{27}{4}y-\frac{5}{3}=-\frac{5}{4}
Combine -6y and -\frac{3}{4}y to get -\frac{27}{4}y.
-\frac{27}{4}y=-\frac{5}{4}+\frac{5}{3}
Add \frac{5}{3} to both sides.
-\frac{27}{4}y=-\frac{15}{12}+\frac{20}{12}
Least common multiple of 4 and 3 is 12. Convert -\frac{5}{4} and \frac{5}{3} to fractions with denominator 12.
-\frac{27}{4}y=\frac{-15+20}{12}
Since -\frac{15}{12} and \frac{20}{12} have the same denominator, add them by adding their numerators.
-\frac{27}{4}y=\frac{5}{12}
Add -15 and 20 to get 5.
y=\frac{5}{12}\left(-\frac{4}{27}\right)
Multiply both sides by -\frac{4}{27}, the reciprocal of -\frac{27}{4}.
y=\frac{5\left(-4\right)}{12\times 27}
Multiply \frac{5}{12} times -\frac{4}{27} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-20}{324}
Do the multiplications in the fraction \frac{5\left(-4\right)}{12\times 27}.
y=-\frac{5}{81}
Reduce the fraction \frac{-20}{324} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}