Solve for x
x\geq \frac{51}{4}
Graph
Share
Copied to clipboard
-24x-\left(2\times 4+1\right)+28x\geq 12\times 4+3-\left(2\times 4+1\right)
Multiply both sides of the equation by 4. Since 4 is positive, the inequality direction remains the same.
-24x-\left(8+1\right)+28x\geq 12\times 4+3-\left(2\times 4+1\right)
Multiply 2 and 4 to get 8.
-24x-9+28x\geq 12\times 4+3-\left(2\times 4+1\right)
Add 8 and 1 to get 9.
4x-9\geq 12\times 4+3-\left(2\times 4+1\right)
Combine -24x and 28x to get 4x.
4x-9\geq 48+3-\left(2\times 4+1\right)
Multiply 12 and 4 to get 48.
4x-9\geq 51-\left(2\times 4+1\right)
Add 48 and 3 to get 51.
4x-9\geq 51-\left(8+1\right)
Multiply 2 and 4 to get 8.
4x-9\geq 51-9
Add 8 and 1 to get 9.
4x-9\geq 42
Subtract 9 from 51 to get 42.
4x\geq 42+9
Add 9 to both sides.
4x\geq 51
Add 42 and 9 to get 51.
x\geq \frac{51}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}