Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-1 ab=-6\times 15=-90
Factor the expression by grouping. First, the expression needs to be rewritten as -6x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Calculate the sum for each pair.
a=9 b=-10
The solution is the pair that gives sum -1.
\left(-6x^{2}+9x\right)+\left(-10x+15\right)
Rewrite -6x^{2}-x+15 as \left(-6x^{2}+9x\right)+\left(-10x+15\right).
-3x\left(2x-3\right)-5\left(2x-3\right)
Factor out -3x in the first and -5 in the second group.
\left(2x-3\right)\left(-3x-5\right)
Factor out common term 2x-3 by using distributive property.
-6x^{2}-x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)\times 15}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+24\times 15}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\left(-6\right)}
Multiply 24 times 15.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\left(-6\right)}
Add 1 to 360.
x=\frac{-\left(-1\right)±19}{2\left(-6\right)}
Take the square root of 361.
x=\frac{1±19}{2\left(-6\right)}
The opposite of -1 is 1.
x=\frac{1±19}{-12}
Multiply 2 times -6.
x=\frac{20}{-12}
Now solve the equation x=\frac{1±19}{-12} when ± is plus. Add 1 to 19.
x=-\frac{5}{3}
Reduce the fraction \frac{20}{-12} to lowest terms by extracting and canceling out 4.
x=-\frac{18}{-12}
Now solve the equation x=\frac{1±19}{-12} when ± is minus. Subtract 19 from 1.
x=\frac{3}{2}
Reduce the fraction \frac{-18}{-12} to lowest terms by extracting and canceling out 6.
-6x^{2}-x+15=-6\left(x-\left(-\frac{5}{3}\right)\right)\left(x-\frac{3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{3} for x_{1} and \frac{3}{2} for x_{2}.
-6x^{2}-x+15=-6\left(x+\frac{5}{3}\right)\left(x-\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-6x^{2}-x+15=-6\times \frac{-3x-5}{-3}\left(x-\frac{3}{2}\right)
Add \frac{5}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}-x+15=-6\times \frac{-3x-5}{-3}\times \frac{-2x+3}{-2}
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-6x^{2}-x+15=-6\times \frac{\left(-3x-5\right)\left(-2x+3\right)}{-3\left(-2\right)}
Multiply \frac{-3x-5}{-3} times \frac{-2x+3}{-2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-6x^{2}-x+15=-6\times \frac{\left(-3x-5\right)\left(-2x+3\right)}{6}
Multiply -3 times -2.
-6x^{2}-x+15=-\left(-3x-5\right)\left(-2x+3\right)
Cancel out 6, the greatest common factor in -6 and 6.
x ^ 2 +\frac{1}{6}x -\frac{5}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{1}{6} rs = -\frac{5}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{12} - u s = -\frac{1}{12} + u
Two numbers r and s sum up to -\frac{1}{6} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{6} = -\frac{1}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{12} - u) (-\frac{1}{12} + u) = -\frac{5}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{5}{2}
\frac{1}{144} - u^2 = -\frac{5}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{5}{2}-\frac{1}{144} = -\frac{361}{144}
Simplify the expression by subtracting \frac{1}{144} on both sides
u^2 = \frac{361}{144} u = \pm\sqrt{\frac{361}{144}} = \pm \frac{19}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{12} - \frac{19}{12} = -1.667 s = -\frac{1}{12} + \frac{19}{12} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.