Solve for x
x=2
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
-6x^{2}+20x=16
Add 20x to both sides.
-6x^{2}+20x-16=0
Subtract 16 from both sides.
-3x^{2}+10x-8=0
Divide both sides by 2.
a+b=10 ab=-3\left(-8\right)=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
1,24 2,12 3,8 4,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 24.
1+24=25 2+12=14 3+8=11 4+6=10
Calculate the sum for each pair.
a=6 b=4
The solution is the pair that gives sum 10.
\left(-3x^{2}+6x\right)+\left(4x-8\right)
Rewrite -3x^{2}+10x-8 as \left(-3x^{2}+6x\right)+\left(4x-8\right).
3x\left(-x+2\right)-4\left(-x+2\right)
Factor out 3x in the first and -4 in the second group.
\left(-x+2\right)\left(3x-4\right)
Factor out common term -x+2 by using distributive property.
x=2 x=\frac{4}{3}
To find equation solutions, solve -x+2=0 and 3x-4=0.
-6x^{2}+20x=16
Add 20x to both sides.
-6x^{2}+20x-16=0
Subtract 16 from both sides.
x=\frac{-20±\sqrt{20^{2}-4\left(-6\right)\left(-16\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 20 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-6\right)\left(-16\right)}}{2\left(-6\right)}
Square 20.
x=\frac{-20±\sqrt{400+24\left(-16\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-20±\sqrt{400-384}}{2\left(-6\right)}
Multiply 24 times -16.
x=\frac{-20±\sqrt{16}}{2\left(-6\right)}
Add 400 to -384.
x=\frac{-20±4}{2\left(-6\right)}
Take the square root of 16.
x=\frac{-20±4}{-12}
Multiply 2 times -6.
x=-\frac{16}{-12}
Now solve the equation x=\frac{-20±4}{-12} when ± is plus. Add -20 to 4.
x=\frac{4}{3}
Reduce the fraction \frac{-16}{-12} to lowest terms by extracting and canceling out 4.
x=-\frac{24}{-12}
Now solve the equation x=\frac{-20±4}{-12} when ± is minus. Subtract 4 from -20.
x=2
Divide -24 by -12.
x=\frac{4}{3} x=2
The equation is now solved.
-6x^{2}+20x=16
Add 20x to both sides.
\frac{-6x^{2}+20x}{-6}=\frac{16}{-6}
Divide both sides by -6.
x^{2}+\frac{20}{-6}x=\frac{16}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{10}{3}x=\frac{16}{-6}
Reduce the fraction \frac{20}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{10}{3}x=-\frac{8}{3}
Reduce the fraction \frac{16}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{10}{3}x+\left(-\frac{5}{3}\right)^{2}=-\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{3}x+\frac{25}{9}=-\frac{8}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{3}x+\frac{25}{9}=\frac{1}{9}
Add -\frac{8}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}-\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x-\frac{5}{3}=\frac{1}{3} x-\frac{5}{3}=-\frac{1}{3}
Simplify.
x=2 x=\frac{4}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}