Solve for k
k=\frac{\sqrt{33}}{12}-\frac{3}{4}\approx -0.271286446
k=-\frac{\sqrt{33}}{12}-\frac{3}{4}\approx -1.228713554
Share
Copied to clipboard
-6k^{2}-2-9k=0
Subtract 9k from both sides.
-6k^{2}-9k-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -9 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-9\right)±\sqrt{81-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
Square -9.
k=\frac{-\left(-9\right)±\sqrt{81+24\left(-2\right)}}{2\left(-6\right)}
Multiply -4 times -6.
k=\frac{-\left(-9\right)±\sqrt{81-48}}{2\left(-6\right)}
Multiply 24 times -2.
k=\frac{-\left(-9\right)±\sqrt{33}}{2\left(-6\right)}
Add 81 to -48.
k=\frac{9±\sqrt{33}}{2\left(-6\right)}
The opposite of -9 is 9.
k=\frac{9±\sqrt{33}}{-12}
Multiply 2 times -6.
k=\frac{\sqrt{33}+9}{-12}
Now solve the equation k=\frac{9±\sqrt{33}}{-12} when ± is plus. Add 9 to \sqrt{33}.
k=-\frac{\sqrt{33}}{12}-\frac{3}{4}
Divide 9+\sqrt{33} by -12.
k=\frac{9-\sqrt{33}}{-12}
Now solve the equation k=\frac{9±\sqrt{33}}{-12} when ± is minus. Subtract \sqrt{33} from 9.
k=\frac{\sqrt{33}}{12}-\frac{3}{4}
Divide 9-\sqrt{33} by -12.
k=-\frac{\sqrt{33}}{12}-\frac{3}{4} k=\frac{\sqrt{33}}{12}-\frac{3}{4}
The equation is now solved.
-6k^{2}-2-9k=0
Subtract 9k from both sides.
-6k^{2}-9k=2
Add 2 to both sides. Anything plus zero gives itself.
\frac{-6k^{2}-9k}{-6}=\frac{2}{-6}
Divide both sides by -6.
k^{2}+\left(-\frac{9}{-6}\right)k=\frac{2}{-6}
Dividing by -6 undoes the multiplication by -6.
k^{2}+\frac{3}{2}k=\frac{2}{-6}
Reduce the fraction \frac{-9}{-6} to lowest terms by extracting and canceling out 3.
k^{2}+\frac{3}{2}k=-\frac{1}{3}
Reduce the fraction \frac{2}{-6} to lowest terms by extracting and canceling out 2.
k^{2}+\frac{3}{2}k+\left(\frac{3}{4}\right)^{2}=-\frac{1}{3}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{3}{2}k+\frac{9}{16}=-\frac{1}{3}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{3}{2}k+\frac{9}{16}=\frac{11}{48}
Add -\frac{1}{3} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{3}{4}\right)^{2}=\frac{11}{48}
Factor k^{2}+\frac{3}{2}k+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{3}{4}\right)^{2}}=\sqrt{\frac{11}{48}}
Take the square root of both sides of the equation.
k+\frac{3}{4}=\frac{\sqrt{33}}{12} k+\frac{3}{4}=-\frac{\sqrt{33}}{12}
Simplify.
k=\frac{\sqrt{33}}{12}-\frac{3}{4} k=-\frac{\sqrt{33}}{12}-\frac{3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}