Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(-a-3a^{2}\right)
Factor out 6.
a\left(-1-3a\right)
Consider -a-3a^{2}. Factor out a.
6a\left(-3a-1\right)
Rewrite the complete factored expression.
-18a^{2}-6a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\left(-18\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-6\right)±6}{2\left(-18\right)}
Take the square root of \left(-6\right)^{2}.
a=\frac{6±6}{2\left(-18\right)}
The opposite of -6 is 6.
a=\frac{6±6}{-36}
Multiply 2 times -18.
a=\frac{12}{-36}
Now solve the equation a=\frac{6±6}{-36} when ± is plus. Add 6 to 6.
a=-\frac{1}{3}
Reduce the fraction \frac{12}{-36} to lowest terms by extracting and canceling out 12.
a=\frac{0}{-36}
Now solve the equation a=\frac{6±6}{-36} when ± is minus. Subtract 6 from 6.
a=0
Divide 0 by -36.
-18a^{2}-6a=-18\left(a-\left(-\frac{1}{3}\right)\right)a
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{3} for x_{1} and 0 for x_{2}.
-18a^{2}-6a=-18\left(a+\frac{1}{3}\right)a
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-18a^{2}-6a=-18\times \frac{-3a-1}{-3}a
Add \frac{1}{3} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-18a^{2}-6a=6\left(-3a-1\right)a
Cancel out 3, the greatest common factor in -18 and -3.