Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(-3+2x+x^{2}\right)
Factor out 2.
x^{2}+2x-3
Consider -3+2x+x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=1\left(-3\right)=-3
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
a=-1 b=3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(x^{2}-x\right)+\left(3x-3\right)
Rewrite x^{2}+2x-3 as \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
Factor out x in the first and 3 in the second group.
\left(x-1\right)\left(x+3\right)
Factor out common term x-1 by using distributive property.
2\left(x-1\right)\left(x+3\right)
Rewrite the complete factored expression.
2x^{2}+4x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-6\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Square 4.
x=\frac{-4±\sqrt{16-8\left(-6\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-4±\sqrt{16+48}}{2\times 2}
Multiply -8 times -6.
x=\frac{-4±\sqrt{64}}{2\times 2}
Add 16 to 48.
x=\frac{-4±8}{2\times 2}
Take the square root of 64.
x=\frac{-4±8}{4}
Multiply 2 times 2.
x=\frac{4}{4}
Now solve the equation x=\frac{-4±8}{4} when ± is plus. Add -4 to 8.
x=1
Divide 4 by 4.
x=-\frac{12}{4}
Now solve the equation x=\frac{-4±8}{4} when ± is minus. Subtract 8 from -4.
x=-3
Divide -12 by 4.
2x^{2}+4x-6=2\left(x-1\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -3 for x_{2}.
2x^{2}+4x-6=2\left(x-1\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.