Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}-61x-114-96=4x
Subtract 96 from both sides.
-5x^{2}-61x-210=4x
Subtract 96 from -114 to get -210.
-5x^{2}-61x-210-4x=0
Subtract 4x from both sides.
-5x^{2}-65x-210=0
Combine -61x and -4x to get -65x.
x=\frac{-\left(-65\right)±\sqrt{\left(-65\right)^{2}-4\left(-5\right)\left(-210\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -65 for b, and -210 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-65\right)±\sqrt{4225-4\left(-5\right)\left(-210\right)}}{2\left(-5\right)}
Square -65.
x=\frac{-\left(-65\right)±\sqrt{4225+20\left(-210\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-65\right)±\sqrt{4225-4200}}{2\left(-5\right)}
Multiply 20 times -210.
x=\frac{-\left(-65\right)±\sqrt{25}}{2\left(-5\right)}
Add 4225 to -4200.
x=\frac{-\left(-65\right)±5}{2\left(-5\right)}
Take the square root of 25.
x=\frac{65±5}{2\left(-5\right)}
The opposite of -65 is 65.
x=\frac{65±5}{-10}
Multiply 2 times -5.
x=\frac{70}{-10}
Now solve the equation x=\frac{65±5}{-10} when ± is plus. Add 65 to 5.
x=-7
Divide 70 by -10.
x=\frac{60}{-10}
Now solve the equation x=\frac{65±5}{-10} when ± is minus. Subtract 5 from 65.
x=-6
Divide 60 by -10.
x=-7 x=-6
The equation is now solved.
-5x^{2}-61x-114-4x=96
Subtract 4x from both sides.
-5x^{2}-65x-114=96
Combine -61x and -4x to get -65x.
-5x^{2}-65x=96+114
Add 114 to both sides.
-5x^{2}-65x=210
Add 96 and 114 to get 210.
\frac{-5x^{2}-65x}{-5}=\frac{210}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{65}{-5}\right)x=\frac{210}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+13x=\frac{210}{-5}
Divide -65 by -5.
x^{2}+13x=-42
Divide 210 by -5.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=-42+\left(\frac{13}{2}\right)^{2}
Divide 13, the coefficient of the x term, by 2 to get \frac{13}{2}. Then add the square of \frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+13x+\frac{169}{4}=-42+\frac{169}{4}
Square \frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+13x+\frac{169}{4}=\frac{1}{4}
Add -42 to \frac{169}{4}.
\left(x+\frac{13}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}+13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x+\frac{13}{2}=\frac{1}{2} x+\frac{13}{2}=-\frac{1}{2}
Simplify.
x=-6 x=-7
Subtract \frac{13}{2} from both sides of the equation.