Solve for n
n=\frac{1}{2}=0.5
n=0
Share
Copied to clipboard
-10n^{2}+5n=0
Use the distributive property to multiply -5n by 2n-1.
n\left(-10n+5\right)=0
Factor out n.
n=0 n=\frac{1}{2}
To find equation solutions, solve n=0 and -10n+5=0.
-10n^{2}+5n=0
Use the distributive property to multiply -5n by 2n-1.
n=\frac{-5±\sqrt{5^{2}}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-5±5}{2\left(-10\right)}
Take the square root of 5^{2}.
n=\frac{-5±5}{-20}
Multiply 2 times -10.
n=\frac{0}{-20}
Now solve the equation n=\frac{-5±5}{-20} when ± is plus. Add -5 to 5.
n=0
Divide 0 by -20.
n=-\frac{10}{-20}
Now solve the equation n=\frac{-5±5}{-20} when ± is minus. Subtract 5 from -5.
n=\frac{1}{2}
Reduce the fraction \frac{-10}{-20} to lowest terms by extracting and canceling out 10.
n=0 n=\frac{1}{2}
The equation is now solved.
-10n^{2}+5n=0
Use the distributive property to multiply -5n by 2n-1.
\frac{-10n^{2}+5n}{-10}=\frac{0}{-10}
Divide both sides by -10.
n^{2}+\frac{5}{-10}n=\frac{0}{-10}
Dividing by -10 undoes the multiplication by -10.
n^{2}-\frac{1}{2}n=\frac{0}{-10}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
n^{2}-\frac{1}{2}n=0
Divide 0 by -10.
n^{2}-\frac{1}{2}n+\left(-\frac{1}{4}\right)^{2}=\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{1}{2}n+\frac{1}{16}=\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
\left(n-\frac{1}{4}\right)^{2}=\frac{1}{16}
Factor n^{2}-\frac{1}{2}n+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
n-\frac{1}{4}=\frac{1}{4} n-\frac{1}{4}=-\frac{1}{4}
Simplify.
n=\frac{1}{2} n=0
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}