Solve for x
x = \frac{17}{6} = 2\frac{5}{6} \approx 2.833333333
Graph
Share
Copied to clipboard
-5x+20+2=-1+x+6
Use the distributive property to multiply -5 by x-4.
-5x+22=-1+x+6
Add 20 and 2 to get 22.
-5x+22=5+x
Add -1 and 6 to get 5.
-5x+22-x=5
Subtract x from both sides.
-6x+22=5
Combine -5x and -x to get -6x.
-6x=5-22
Subtract 22 from both sides.
-6x=-17
Subtract 22 from 5 to get -17.
x=\frac{-17}{-6}
Divide both sides by -6.
x=\frac{17}{6}
Fraction \frac{-17}{-6} can be simplified to \frac{17}{6} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}