Evaluate
-26+2i
Real Part
-26
Quiz
Complex Number
5 problems similar to:
- 5 ( 4 ) + ( - 5 ) ( 2 i ) + ( 3 i ) ( 4 ) + ( 3 i ) ( 2 i )
Share
Copied to clipboard
-20-5\times \left(2i\right)+3i\times 4+3i\times \left(2i\right)
Multiply -5 and 4 to get -20.
-20-10i+3i\times 4+3i\times \left(2i\right)
Multiply -5 and 2i to get -10i.
-20-10i+12i+3i\times \left(2i\right)
Multiply 3i and 4 to get 12i.
3i\times \left(2i\right)-20+\left(-10+12\right)i
Combine the real and imaginary parts.
3i\times \left(2i\right)-20+2i
Add -10 to 12.
\left(1+3i\right)\times \left(2i\right)-20
Combine 3i\times \left(2i\right) and 2i to get \left(1+3i\right)\times \left(2i\right).
1\times \left(2i\right)+3\times 2i^{2}-20
Multiply 1+3i times 2i.
1\times \left(2i\right)+3\times 2\left(-1\right)-20
By definition, i^{2} is -1.
-6+2i-20
Do the multiplications in 1\times \left(2i\right)+3\times 2\left(-1\right). Reorder the terms.
-6-20+2i
Combine the real and imaginary parts.
-26+2i
Add -6 to -20.
Re(-20-5\times \left(2i\right)+3i\times 4+3i\times \left(2i\right))
Multiply -5 and 4 to get -20.
Re(-20-10i+3i\times 4+3i\times \left(2i\right))
Multiply -5 and 2i to get -10i.
Re(-20-10i+12i+3i\times \left(2i\right))
Multiply 3i and 4 to get 12i.
Re(3i\times \left(2i\right)-20+\left(-10+12\right)i)
Combine the real and imaginary parts in -20-10i+12i.
Re(3i\times \left(2i\right)-20+2i)
Add -10 to 12.
Re(\left(1+3i\right)\times \left(2i\right)-20)
Combine 3i\times \left(2i\right) and 2i to get \left(1+3i\right)\times \left(2i\right).
Re(1\times \left(2i\right)+3\times 2i^{2}-20)
Multiply 1+3i times 2i.
Re(1\times \left(2i\right)+3\times 2\left(-1\right)-20)
By definition, i^{2} is -1.
Re(-6+2i-20)
Do the multiplications in 1\times \left(2i\right)+3\times 2\left(-1\right). Reorder the terms.
Re(-6-20+2i)
Combine the real and imaginary parts in -6+2i-20.
Re(-26+2i)
Add -6 to -20.
-26
The real part of -26+2i is -26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}