Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-15\sqrt{\frac{8}{27}}\sqrt{\frac{3+1}{3}}\sqrt{54}
Multiply 3 and -5 to get -15.
-15\times \frac{\sqrt{8}}{\sqrt{27}}\sqrt{\frac{3+1}{3}}\sqrt{54}
Rewrite the square root of the division \sqrt{\frac{8}{27}} as the division of square roots \frac{\sqrt{8}}{\sqrt{27}}.
-15\times \frac{2\sqrt{2}}{\sqrt{27}}\sqrt{\frac{3+1}{3}}\sqrt{54}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-15\times \frac{2\sqrt{2}}{3\sqrt{3}}\sqrt{\frac{3+1}{3}}\sqrt{54}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
-15\times \frac{2\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}\sqrt{\frac{3+1}{3}}\sqrt{54}
Rationalize the denominator of \frac{2\sqrt{2}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-15\times \frac{2\sqrt{2}\sqrt{3}}{3\times 3}\sqrt{\frac{3+1}{3}}\sqrt{54}
The square of \sqrt{3} is 3.
-15\times \frac{2\sqrt{6}}{3\times 3}\sqrt{\frac{3+1}{3}}\sqrt{54}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-15\times \frac{2\sqrt{6}}{9}\sqrt{\frac{3+1}{3}}\sqrt{54}
Multiply 3 and 3 to get 9.
-15\times \frac{2\sqrt{6}}{9}\sqrt{\frac{4}{3}}\sqrt{54}
Add 3 and 1 to get 4.
-15\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{4}}{\sqrt{3}}\sqrt{54}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
-15\times \frac{2\sqrt{6}}{9}\times \frac{2}{\sqrt{3}}\sqrt{54}
Calculate the square root of 4 and get 2.
-15\times \frac{2\sqrt{6}}{9}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\sqrt{54}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-15\times \frac{2\sqrt{6}}{9}\times \frac{2\sqrt{3}}{3}\sqrt{54}
The square of \sqrt{3} is 3.
-15\times \frac{2\sqrt{6}}{9}\times \frac{2\sqrt{3}}{3}\times 3\sqrt{6}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
-45\times \frac{2\sqrt{6}}{9}\times \frac{2\sqrt{3}}{3}\sqrt{6}
Multiply -15 and 3 to get -45.
-5\times 2\sqrt{6}\times \frac{2\sqrt{3}}{3}\sqrt{6}
Cancel out 9, the greatest common factor in 45 and 9.
\frac{-5\times 2\sqrt{6}\times 2\sqrt{3}}{3}\sqrt{6}
Express -5\times 2\sqrt{6}\times \frac{2\sqrt{3}}{3} as a single fraction.
\frac{-5\times 2\sqrt{6}\times 2\sqrt{3}\sqrt{6}}{3}
Express \frac{-5\times 2\sqrt{6}\times 2\sqrt{3}}{3}\sqrt{6} as a single fraction.
\frac{-5\times 2\times 6\times 2\sqrt{3}}{3}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{-10\times 6\times 2\sqrt{3}}{3}
Multiply -5 and 2 to get -10.
\frac{-60\times 2\sqrt{3}}{3}
Multiply -10 and 6 to get -60.
\frac{-120\sqrt{3}}{3}
Multiply -60 and 2 to get -120.
-40\sqrt{3}
Divide -120\sqrt{3} by 3 to get -40\sqrt{3}.