Solve for n
n=-4
n=15
Share
Copied to clipboard
-30=5n+3n\left(n-1\right)\times \frac{-1}{6}
Multiply both sides of the equation by 6, the least common multiple of 6,2.
-30=5n+3n\left(n-1\right)\left(-\frac{1}{6}\right)
Fraction \frac{-1}{6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
-30=5n+\frac{3\left(-1\right)}{6}n\left(n-1\right)
Express 3\left(-\frac{1}{6}\right) as a single fraction.
-30=5n+\frac{-3}{6}n\left(n-1\right)
Multiply 3 and -1 to get -3.
-30=5n-\frac{1}{2}n\left(n-1\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
-30=5n-\frac{1}{2}nn-\frac{1}{2}n\left(-1\right)
Use the distributive property to multiply -\frac{1}{2}n by n-1.
-30=5n-\frac{1}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Multiply n and n to get n^{2}.
-30=5n-\frac{1}{2}n^{2}+\frac{1}{2}n
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
-30=\frac{11}{2}n-\frac{1}{2}n^{2}
Combine 5n and \frac{1}{2}n to get \frac{11}{2}n.
\frac{11}{2}n-\frac{1}{2}n^{2}=-30
Swap sides so that all variable terms are on the left hand side.
\frac{11}{2}n-\frac{1}{2}n^{2}+30=0
Add 30 to both sides.
-\frac{1}{2}n^{2}+\frac{11}{2}n+30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\frac{11}{2}±\sqrt{\left(\frac{11}{2}\right)^{2}-4\left(-\frac{1}{2}\right)\times 30}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{11}{2} for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\frac{11}{2}±\sqrt{\frac{121}{4}-4\left(-\frac{1}{2}\right)\times 30}}{2\left(-\frac{1}{2}\right)}
Square \frac{11}{2} by squaring both the numerator and the denominator of the fraction.
n=\frac{-\frac{11}{2}±\sqrt{\frac{121}{4}+2\times 30}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
n=\frac{-\frac{11}{2}±\sqrt{\frac{121}{4}+60}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 30.
n=\frac{-\frac{11}{2}±\sqrt{\frac{361}{4}}}{2\left(-\frac{1}{2}\right)}
Add \frac{121}{4} to 60.
n=\frac{-\frac{11}{2}±\frac{19}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{361}{4}.
n=\frac{-\frac{11}{2}±\frac{19}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
n=\frac{4}{-1}
Now solve the equation n=\frac{-\frac{11}{2}±\frac{19}{2}}{-1} when ± is plus. Add -\frac{11}{2} to \frac{19}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
n=-4
Divide 4 by -1.
n=-\frac{15}{-1}
Now solve the equation n=\frac{-\frac{11}{2}±\frac{19}{2}}{-1} when ± is minus. Subtract \frac{19}{2} from -\frac{11}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
n=15
Divide -15 by -1.
n=-4 n=15
The equation is now solved.
-30=5n+3n\left(n-1\right)\times \frac{-1}{6}
Multiply both sides of the equation by 6, the least common multiple of 6,2.
-30=5n+3n\left(n-1\right)\left(-\frac{1}{6}\right)
Fraction \frac{-1}{6} can be rewritten as -\frac{1}{6} by extracting the negative sign.
-30=5n+\frac{3\left(-1\right)}{6}n\left(n-1\right)
Express 3\left(-\frac{1}{6}\right) as a single fraction.
-30=5n+\frac{-3}{6}n\left(n-1\right)
Multiply 3 and -1 to get -3.
-30=5n-\frac{1}{2}n\left(n-1\right)
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
-30=5n-\frac{1}{2}nn-\frac{1}{2}n\left(-1\right)
Use the distributive property to multiply -\frac{1}{2}n by n-1.
-30=5n-\frac{1}{2}n^{2}-\frac{1}{2}n\left(-1\right)
Multiply n and n to get n^{2}.
-30=5n-\frac{1}{2}n^{2}+\frac{1}{2}n
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
-30=\frac{11}{2}n-\frac{1}{2}n^{2}
Combine 5n and \frac{1}{2}n to get \frac{11}{2}n.
\frac{11}{2}n-\frac{1}{2}n^{2}=-30
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}n^{2}+\frac{11}{2}n=-30
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}n^{2}+\frac{11}{2}n}{-\frac{1}{2}}=-\frac{30}{-\frac{1}{2}}
Multiply both sides by -2.
n^{2}+\frac{\frac{11}{2}}{-\frac{1}{2}}n=-\frac{30}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
n^{2}-11n=-\frac{30}{-\frac{1}{2}}
Divide \frac{11}{2} by -\frac{1}{2} by multiplying \frac{11}{2} by the reciprocal of -\frac{1}{2}.
n^{2}-11n=60
Divide -30 by -\frac{1}{2} by multiplying -30 by the reciprocal of -\frac{1}{2}.
n^{2}-11n+\left(-\frac{11}{2}\right)^{2}=60+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-11n+\frac{121}{4}=60+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-11n+\frac{121}{4}=\frac{361}{4}
Add 60 to \frac{121}{4}.
\left(n-\frac{11}{2}\right)^{2}=\frac{361}{4}
Factor n^{2}-11n+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{11}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Take the square root of both sides of the equation.
n-\frac{11}{2}=\frac{19}{2} n-\frac{11}{2}=-\frac{19}{2}
Simplify.
n=15 n=-4
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}