- 5 + 5 \% = - 5 * s
Solve for s
s=\frac{99}{100}=0.99
Share
Copied to clipboard
-5+\frac{1}{20}=-5s
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
-\frac{100}{20}+\frac{1}{20}=-5s
Convert -5 to fraction -\frac{100}{20}.
\frac{-100+1}{20}=-5s
Since -\frac{100}{20} and \frac{1}{20} have the same denominator, add them by adding their numerators.
-\frac{99}{20}=-5s
Add -100 and 1 to get -99.
-5s=-\frac{99}{20}
Swap sides so that all variable terms are on the left hand side.
s=\frac{-\frac{99}{20}}{-5}
Divide both sides by -5.
s=\frac{-99}{20\left(-5\right)}
Express \frac{-\frac{99}{20}}{-5} as a single fraction.
s=\frac{-99}{-100}
Multiply 20 and -5 to get -100.
s=\frac{99}{100}
Fraction \frac{-99}{-100} can be simplified to \frac{99}{100} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}