Solve for x
x\leq -\frac{39}{4}
Graph
Share
Copied to clipboard
-120+8x\geq 3\left(4x+1\right)-12\left(3\times 2+1\right)
Multiply both sides of the equation by 24, the least common multiple of 3,8,2. Since 24 is positive, the inequality direction remains the same.
-120+8x\geq 12x+3-12\left(3\times 2+1\right)
Use the distributive property to multiply 3 by 4x+1.
-120+8x\geq 12x+3-12\left(6+1\right)
Multiply 3 and 2 to get 6.
-120+8x\geq 12x+3-12\times 7
Add 6 and 1 to get 7.
-120+8x\geq 12x+3-84
Multiply -12 and 7 to get -84.
-120+8x\geq 12x-81
Subtract 84 from 3 to get -81.
-120+8x-12x\geq -81
Subtract 12x from both sides.
-120-4x\geq -81
Combine 8x and -12x to get -4x.
-4x\geq -81+120
Add 120 to both sides.
-4x\geq 39
Add -81 and 120 to get 39.
x\leq -\frac{39}{4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}