Solve for t
t=\frac{-2\sqrt{6249374}i+50}{49}\approx 1.020408163-102.035705994i
t=\frac{50+2\sqrt{6249374}i}{49}\approx 1.020408163+102.035705994i
Share
Copied to clipboard
-49t^{2}+100t-510204=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-100±\sqrt{100^{2}-4\left(-49\right)\left(-510204\right)}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 100 for b, and -510204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-100±\sqrt{10000-4\left(-49\right)\left(-510204\right)}}{2\left(-49\right)}
Square 100.
t=\frac{-100±\sqrt{10000+196\left(-510204\right)}}{2\left(-49\right)}
Multiply -4 times -49.
t=\frac{-100±\sqrt{10000-99999984}}{2\left(-49\right)}
Multiply 196 times -510204.
t=\frac{-100±\sqrt{-99989984}}{2\left(-49\right)}
Add 10000 to -99999984.
t=\frac{-100±4\sqrt{6249374}i}{2\left(-49\right)}
Take the square root of -99989984.
t=\frac{-100±4\sqrt{6249374}i}{-98}
Multiply 2 times -49.
t=\frac{-100+4\sqrt{6249374}i}{-98}
Now solve the equation t=\frac{-100±4\sqrt{6249374}i}{-98} when ± is plus. Add -100 to 4i\sqrt{6249374}.
t=\frac{-2\sqrt{6249374}i+50}{49}
Divide -100+4i\sqrt{6249374} by -98.
t=\frac{-4\sqrt{6249374}i-100}{-98}
Now solve the equation t=\frac{-100±4\sqrt{6249374}i}{-98} when ± is minus. Subtract 4i\sqrt{6249374} from -100.
t=\frac{50+2\sqrt{6249374}i}{49}
Divide -100-4i\sqrt{6249374} by -98.
t=\frac{-2\sqrt{6249374}i+50}{49} t=\frac{50+2\sqrt{6249374}i}{49}
The equation is now solved.
-49t^{2}+100t-510204=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-49t^{2}+100t-510204-\left(-510204\right)=-\left(-510204\right)
Add 510204 to both sides of the equation.
-49t^{2}+100t=-\left(-510204\right)
Subtracting -510204 from itself leaves 0.
-49t^{2}+100t=510204
Subtract -510204 from 0.
\frac{-49t^{2}+100t}{-49}=\frac{510204}{-49}
Divide both sides by -49.
t^{2}+\frac{100}{-49}t=\frac{510204}{-49}
Dividing by -49 undoes the multiplication by -49.
t^{2}-\frac{100}{49}t=\frac{510204}{-49}
Divide 100 by -49.
t^{2}-\frac{100}{49}t=-\frac{510204}{49}
Divide 510204 by -49.
t^{2}-\frac{100}{49}t+\left(-\frac{50}{49}\right)^{2}=-\frac{510204}{49}+\left(-\frac{50}{49}\right)^{2}
Divide -\frac{100}{49}, the coefficient of the x term, by 2 to get -\frac{50}{49}. Then add the square of -\frac{50}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{100}{49}t+\frac{2500}{2401}=-\frac{510204}{49}+\frac{2500}{2401}
Square -\frac{50}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{100}{49}t+\frac{2500}{2401}=-\frac{24997496}{2401}
Add -\frac{510204}{49} to \frac{2500}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{50}{49}\right)^{2}=-\frac{24997496}{2401}
Factor t^{2}-\frac{100}{49}t+\frac{2500}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{50}{49}\right)^{2}}=\sqrt{-\frac{24997496}{2401}}
Take the square root of both sides of the equation.
t-\frac{50}{49}=\frac{2\sqrt{6249374}i}{49} t-\frac{50}{49}=-\frac{2\sqrt{6249374}i}{49}
Simplify.
t=\frac{50+2\sqrt{6249374}i}{49} t=\frac{-2\sqrt{6249374}i+50}{49}
Add \frac{50}{49} to both sides of the equation.
x ^ 2 -\frac{100}{49}x +\frac{510204}{49} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{100}{49} rs = \frac{510204}{49}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{50}{49} - u s = \frac{50}{49} + u
Two numbers r and s sum up to \frac{100}{49} exactly when the average of the two numbers is \frac{1}{2}*\frac{100}{49} = \frac{50}{49}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{50}{49} - u) (\frac{50}{49} + u) = \frac{510204}{49}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{510204}{49}
\frac{2500}{2401} - u^2 = \frac{510204}{49}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{510204}{49}-\frac{2500}{2401} = -\frac{24997496}{2401}
Simplify the expression by subtracting \frac{2500}{2401} on both sides
u^2 = \frac{24997496}{2401} u = \pm\sqrt{\frac{24997496}{2401}} = \pm \frac{\sqrt{24997496}}{49}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{50}{49} - \frac{\sqrt{24997496}}{49} = 1.020 - 102.036i s = \frac{50}{49} + \frac{\sqrt{24997496}}{49} = 1.020 + 102.036i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}