Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}+4x=-48
Swap sides so that all variable terms are on the left hand side.
-4x^{2}+4x+48=0
Add 48 to both sides.
-x^{2}+x+12=0
Divide both sides by 4.
a+b=1 ab=-12=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=4 b=-3
The solution is the pair that gives sum 1.
\left(-x^{2}+4x\right)+\left(-3x+12\right)
Rewrite -x^{2}+x+12 as \left(-x^{2}+4x\right)+\left(-3x+12\right).
-x\left(x-4\right)-3\left(x-4\right)
Factor out -x in the first and -3 in the second group.
\left(x-4\right)\left(-x-3\right)
Factor out common term x-4 by using distributive property.
x=4 x=-3
To find equation solutions, solve x-4=0 and -x-3=0.
-4x^{2}+4x=-48
Swap sides so that all variable terms are on the left hand side.
-4x^{2}+4x+48=0
Add 48 to both sides.
x=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\times 48}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 4 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-4\right)\times 48}}{2\left(-4\right)}
Square 4.
x=\frac{-4±\sqrt{16+16\times 48}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-4±\sqrt{16+768}}{2\left(-4\right)}
Multiply 16 times 48.
x=\frac{-4±\sqrt{784}}{2\left(-4\right)}
Add 16 to 768.
x=\frac{-4±28}{2\left(-4\right)}
Take the square root of 784.
x=\frac{-4±28}{-8}
Multiply 2 times -4.
x=\frac{24}{-8}
Now solve the equation x=\frac{-4±28}{-8} when ± is plus. Add -4 to 28.
x=-3
Divide 24 by -8.
x=-\frac{32}{-8}
Now solve the equation x=\frac{-4±28}{-8} when ± is minus. Subtract 28 from -4.
x=4
Divide -32 by -8.
x=-3 x=4
The equation is now solved.
-4x^{2}+4x=-48
Swap sides so that all variable terms are on the left hand side.
\frac{-4x^{2}+4x}{-4}=-\frac{48}{-4}
Divide both sides by -4.
x^{2}+\frac{4}{-4}x=-\frac{48}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-x=-\frac{48}{-4}
Divide 4 by -4.
x^{2}-x=12
Divide -48 by -4.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=12+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=12+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=\frac{49}{4}
Add 12 to \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{7}{2} x-\frac{1}{2}=-\frac{7}{2}
Simplify.
x=4 x=-3
Add \frac{1}{2} to both sides of the equation.