Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x^{2}-43x+350=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-43\right)±\sqrt{\left(-43\right)^{2}-4\times 7\times 350}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -43 for b, and 350 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-43\right)±\sqrt{1849-4\times 7\times 350}}{2\times 7}
Square -43.
x=\frac{-\left(-43\right)±\sqrt{1849-28\times 350}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-43\right)±\sqrt{1849-9800}}{2\times 7}
Multiply -28 times 350.
x=\frac{-\left(-43\right)±\sqrt{-7951}}{2\times 7}
Add 1849 to -9800.
x=\frac{-\left(-43\right)±\sqrt{7951}i}{2\times 7}
Take the square root of -7951.
x=\frac{43±\sqrt{7951}i}{2\times 7}
The opposite of -43 is 43.
x=\frac{43±\sqrt{7951}i}{14}
Multiply 2 times 7.
x=\frac{43+\sqrt{7951}i}{14}
Now solve the equation x=\frac{43±\sqrt{7951}i}{14} when ± is plus. Add 43 to i\sqrt{7951}.
x=\frac{-\sqrt{7951}i+43}{14}
Now solve the equation x=\frac{43±\sqrt{7951}i}{14} when ± is minus. Subtract i\sqrt{7951} from 43.
x=\frac{43+\sqrt{7951}i}{14} x=\frac{-\sqrt{7951}i+43}{14}
The equation is now solved.
7x^{2}-43x+350=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
7x^{2}-43x+350-350=-350
Subtract 350 from both sides of the equation.
7x^{2}-43x=-350
Subtracting 350 from itself leaves 0.
\frac{7x^{2}-43x}{7}=-\frac{350}{7}
Divide both sides by 7.
x^{2}-\frac{43}{7}x=-\frac{350}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{43}{7}x=-50
Divide -350 by 7.
x^{2}-\frac{43}{7}x+\left(-\frac{43}{14}\right)^{2}=-50+\left(-\frac{43}{14}\right)^{2}
Divide -\frac{43}{7}, the coefficient of the x term, by 2 to get -\frac{43}{14}. Then add the square of -\frac{43}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{43}{7}x+\frac{1849}{196}=-50+\frac{1849}{196}
Square -\frac{43}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{43}{7}x+\frac{1849}{196}=-\frac{7951}{196}
Add -50 to \frac{1849}{196}.
\left(x-\frac{43}{14}\right)^{2}=-\frac{7951}{196}
Factor x^{2}-\frac{43}{7}x+\frac{1849}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{43}{14}\right)^{2}}=\sqrt{-\frac{7951}{196}}
Take the square root of both sides of the equation.
x-\frac{43}{14}=\frac{\sqrt{7951}i}{14} x-\frac{43}{14}=-\frac{\sqrt{7951}i}{14}
Simplify.
x=\frac{43+\sqrt{7951}i}{14} x=\frac{-\sqrt{7951}i+43}{14}
Add \frac{43}{14} to both sides of the equation.