Solve for x (complex solution)
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x=-i
x=i
Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
-4t^{2}+5t+9=0
Substitute t for x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\left(-4\right)\times 9}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 5 for b, and 9 for c in the quadratic formula.
t=\frac{-5±13}{-8}
Do the calculations.
t=-1 t=\frac{9}{4}
Solve the equation t=\frac{-5±13}{-8} when ± is plus and when ± is minus.
x=-i x=i x=-\frac{3}{2} x=\frac{3}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
-4t^{2}+5t+9=0
Substitute t for x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\left(-4\right)\times 9}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 5 for b, and 9 for c in the quadratic formula.
t=\frac{-5±13}{-8}
Do the calculations.
t=-1 t=\frac{9}{4}
Solve the equation t=\frac{-5±13}{-8} when ± is plus and when ± is minus.
x=\frac{3}{2} x=-\frac{3}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}