Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}-8x=60
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-4x^{2}-8x-60=60-60
Subtract 60 from both sides of the equation.
-4x^{2}-8x-60=0
Subtracting 60 from itself leaves 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-4\right)\left(-60\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -8 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-4\right)\left(-60\right)}}{2\left(-4\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+16\left(-60\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-8\right)±\sqrt{64-960}}{2\left(-4\right)}
Multiply 16 times -60.
x=\frac{-\left(-8\right)±\sqrt{-896}}{2\left(-4\right)}
Add 64 to -960.
x=\frac{-\left(-8\right)±8\sqrt{14}i}{2\left(-4\right)}
Take the square root of -896.
x=\frac{8±8\sqrt{14}i}{2\left(-4\right)}
The opposite of -8 is 8.
x=\frac{8±8\sqrt{14}i}{-8}
Multiply 2 times -4.
x=\frac{8+8\sqrt{14}i}{-8}
Now solve the equation x=\frac{8±8\sqrt{14}i}{-8} when ± is plus. Add 8 to 8i\sqrt{14}.
x=-\sqrt{14}i-1
Divide 8+8i\sqrt{14} by -8.
x=\frac{-8\sqrt{14}i+8}{-8}
Now solve the equation x=\frac{8±8\sqrt{14}i}{-8} when ± is minus. Subtract 8i\sqrt{14} from 8.
x=-1+\sqrt{14}i
Divide 8-8i\sqrt{14} by -8.
x=-\sqrt{14}i-1 x=-1+\sqrt{14}i
The equation is now solved.
-4x^{2}-8x=60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}-8x}{-4}=\frac{60}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{8}{-4}\right)x=\frac{60}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+2x=\frac{60}{-4}
Divide -8 by -4.
x^{2}+2x=-15
Divide 60 by -4.
x^{2}+2x+1^{2}=-15+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-15+1
Square 1.
x^{2}+2x+1=-14
Add -15 to 1.
\left(x+1\right)^{2}=-14
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-14}
Take the square root of both sides of the equation.
x+1=\sqrt{14}i x+1=-\sqrt{14}i
Simplify.
x=-1+\sqrt{14}i x=-\sqrt{14}i-1
Subtract 1 from both sides of the equation.