Solve for x
x = \frac{\sqrt{2} + 3}{2} \approx 2.207106781
x=\frac{3-\sqrt{2}}{2}\approx 0.792893219
Graph
Share
Copied to clipboard
-4x^{2}+12x=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-4x^{2}+12x-7=7-7
Subtract 7 from both sides of the equation.
-4x^{2}+12x-7=0
Subtracting 7 from itself leaves 0.
x=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\left(-7\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 12 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-4\right)\left(-7\right)}}{2\left(-4\right)}
Square 12.
x=\frac{-12±\sqrt{144+16\left(-7\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-12±\sqrt{144-112}}{2\left(-4\right)}
Multiply 16 times -7.
x=\frac{-12±\sqrt{32}}{2\left(-4\right)}
Add 144 to -112.
x=\frac{-12±4\sqrt{2}}{2\left(-4\right)}
Take the square root of 32.
x=\frac{-12±4\sqrt{2}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{2}-12}{-8}
Now solve the equation x=\frac{-12±4\sqrt{2}}{-8} when ± is plus. Add -12 to 4\sqrt{2}.
x=\frac{3-\sqrt{2}}{2}
Divide -12+4\sqrt{2} by -8.
x=\frac{-4\sqrt{2}-12}{-8}
Now solve the equation x=\frac{-12±4\sqrt{2}}{-8} when ± is minus. Subtract 4\sqrt{2} from -12.
x=\frac{\sqrt{2}+3}{2}
Divide -12-4\sqrt{2} by -8.
x=\frac{3-\sqrt{2}}{2} x=\frac{\sqrt{2}+3}{2}
The equation is now solved.
-4x^{2}+12x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+12x}{-4}=\frac{7}{-4}
Divide both sides by -4.
x^{2}+\frac{12}{-4}x=\frac{7}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-3x=\frac{7}{-4}
Divide 12 by -4.
x^{2}-3x=-\frac{7}{4}
Divide 7 by -4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{7}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{-7+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{1}{2}
Add -\frac{7}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{2}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{2}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{2}}{2} x-\frac{3}{2}=-\frac{\sqrt{2}}{2}
Simplify.
x=\frac{\sqrt{2}+3}{2} x=\frac{3-\sqrt{2}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}