Solve for x
x = \frac{\sqrt{89} + 3}{4} \approx 3.108495283
x=\frac{3-\sqrt{89}}{4}\approx -1.608495283
Graph
Share
Copied to clipboard
-4x^{2}+12+6x=-8
Add 6x to both sides.
-4x^{2}+12+6x+8=0
Add 8 to both sides.
-4x^{2}+20+6x=0
Add 12 and 8 to get 20.
-4x^{2}+6x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-4\right)\times 20}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 6 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-4\right)\times 20}}{2\left(-4\right)}
Square 6.
x=\frac{-6±\sqrt{36+16\times 20}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-6±\sqrt{36+320}}{2\left(-4\right)}
Multiply 16 times 20.
x=\frac{-6±\sqrt{356}}{2\left(-4\right)}
Add 36 to 320.
x=\frac{-6±2\sqrt{89}}{2\left(-4\right)}
Take the square root of 356.
x=\frac{-6±2\sqrt{89}}{-8}
Multiply 2 times -4.
x=\frac{2\sqrt{89}-6}{-8}
Now solve the equation x=\frac{-6±2\sqrt{89}}{-8} when ± is plus. Add -6 to 2\sqrt{89}.
x=\frac{3-\sqrt{89}}{4}
Divide -6+2\sqrt{89} by -8.
x=\frac{-2\sqrt{89}-6}{-8}
Now solve the equation x=\frac{-6±2\sqrt{89}}{-8} when ± is minus. Subtract 2\sqrt{89} from -6.
x=\frac{\sqrt{89}+3}{4}
Divide -6-2\sqrt{89} by -8.
x=\frac{3-\sqrt{89}}{4} x=\frac{\sqrt{89}+3}{4}
The equation is now solved.
-4x^{2}+12+6x=-8
Add 6x to both sides.
-4x^{2}+6x=-8-12
Subtract 12 from both sides.
-4x^{2}+6x=-20
Subtract 12 from -8 to get -20.
\frac{-4x^{2}+6x}{-4}=-\frac{20}{-4}
Divide both sides by -4.
x^{2}+\frac{6}{-4}x=-\frac{20}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{3}{2}x=-\frac{20}{-4}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{2}x=5
Divide -20 by -4.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=5+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=5+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{89}{16}
Add 5 to \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{89}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{89}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{89}}{4} x-\frac{3}{4}=-\frac{\sqrt{89}}{4}
Simplify.
x=\frac{\sqrt{89}+3}{4} x=\frac{3-\sqrt{89}}{4}
Add \frac{3}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}