Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

-4r^{2}=-164-48
Subtract 48 from both sides.
-4r^{2}=-212
Subtract 48 from -164 to get -212.
r^{2}=\frac{-212}{-4}
Divide both sides by -4.
r^{2}=53
Divide -212 by -4 to get 53.
r=\sqrt{53} r=-\sqrt{53}
Take the square root of both sides of the equation.
-4r^{2}+48+164=0
Add 164 to both sides.
-4r^{2}+212=0
Add 48 and 164 to get 212.
r=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 212}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and 212 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-4\right)\times 212}}{2\left(-4\right)}
Square 0.
r=\frac{0±\sqrt{16\times 212}}{2\left(-4\right)}
Multiply -4 times -4.
r=\frac{0±\sqrt{3392}}{2\left(-4\right)}
Multiply 16 times 212.
r=\frac{0±8\sqrt{53}}{2\left(-4\right)}
Take the square root of 3392.
r=\frac{0±8\sqrt{53}}{-8}
Multiply 2 times -4.
r=-\sqrt{53}
Now solve the equation r=\frac{0±8\sqrt{53}}{-8} when ± is plus.
r=\sqrt{53}
Now solve the equation r=\frac{0±8\sqrt{53}}{-8} when ± is minus.
r=-\sqrt{53} r=\sqrt{53}
The equation is now solved.