Solve for k
k\in \left(-\infty,-\frac{1}{4}\right)\cup \left(3,\infty\right)
Share
Copied to clipboard
4k^{2}-11k-3>0
Multiply the inequality by -1 to make the coefficient of the highest power in -4k^{2}+11k+3 positive. Since -1 is negative, the inequality direction is changed.
4k^{2}-11k-3=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -11 for b, and -3 for c in the quadratic formula.
k=\frac{11±13}{8}
Do the calculations.
k=3 k=-\frac{1}{4}
Solve the equation k=\frac{11±13}{8} when ± is plus and when ± is minus.
4\left(k-3\right)\left(k+\frac{1}{4}\right)>0
Rewrite the inequality by using the obtained solutions.
k-3<0 k+\frac{1}{4}<0
For the product to be positive, k-3 and k+\frac{1}{4} have to be both negative or both positive. Consider the case when k-3 and k+\frac{1}{4} are both negative.
k<-\frac{1}{4}
The solution satisfying both inequalities is k<-\frac{1}{4}.
k+\frac{1}{4}>0 k-3>0
Consider the case when k-3 and k+\frac{1}{4} are both positive.
k>3
The solution satisfying both inequalities is k>3.
k<-\frac{1}{4}\text{; }k>3
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}