Solve for f
f=g+1
Solve for g
g=f-1
Share
Copied to clipboard
4f-4=4g
Add 4g to both sides. Anything plus zero gives itself.
4f=4g+4
Add 4 to both sides.
\frac{4f}{4}=\frac{4g+4}{4}
Divide both sides by 4.
f=\frac{4g+4}{4}
Dividing by 4 undoes the multiplication by 4.
f=g+1
Divide 4+4g by 4.
-4g-4=-4f
Subtract 4f from both sides. Anything subtracted from zero gives its negation.
-4g=-4f+4
Add 4 to both sides.
-4g=4-4f
The equation is in standard form.
\frac{-4g}{-4}=\frac{4-4f}{-4}
Divide both sides by -4.
g=\frac{4-4f}{-4}
Dividing by -4 undoes the multiplication by -4.
g=f-1
Divide -4f+4 by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}