Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

-8z+24=-3\left(z-4\right)z
Use the distributive property to multiply -4 by 2z-6.
-8z+24=\left(-3z+12\right)z
Use the distributive property to multiply -3 by z-4.
-8z+24=-3z^{2}+12z
Use the distributive property to multiply -3z+12 by z.
-8z+24+3z^{2}=12z
Add 3z^{2} to both sides.
-8z+24+3z^{2}-12z=0
Subtract 12z from both sides.
-20z+24+3z^{2}=0
Combine -8z and -12z to get -20z.
3z^{2}-20z+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 3\times 24}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -20 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-20\right)±\sqrt{400-4\times 3\times 24}}{2\times 3}
Square -20.
z=\frac{-\left(-20\right)±\sqrt{400-12\times 24}}{2\times 3}
Multiply -4 times 3.
z=\frac{-\left(-20\right)±\sqrt{400-288}}{2\times 3}
Multiply -12 times 24.
z=\frac{-\left(-20\right)±\sqrt{112}}{2\times 3}
Add 400 to -288.
z=\frac{-\left(-20\right)±4\sqrt{7}}{2\times 3}
Take the square root of 112.
z=\frac{20±4\sqrt{7}}{2\times 3}
The opposite of -20 is 20.
z=\frac{20±4\sqrt{7}}{6}
Multiply 2 times 3.
z=\frac{4\sqrt{7}+20}{6}
Now solve the equation z=\frac{20±4\sqrt{7}}{6} when ± is plus. Add 20 to 4\sqrt{7}.
z=\frac{2\sqrt{7}+10}{3}
Divide 20+4\sqrt{7} by 6.
z=\frac{20-4\sqrt{7}}{6}
Now solve the equation z=\frac{20±4\sqrt{7}}{6} when ± is minus. Subtract 4\sqrt{7} from 20.
z=\frac{10-2\sqrt{7}}{3}
Divide 20-4\sqrt{7} by 6.
z=\frac{2\sqrt{7}+10}{3} z=\frac{10-2\sqrt{7}}{3}
The equation is now solved.
-8z+24=-3\left(z-4\right)z
Use the distributive property to multiply -4 by 2z-6.
-8z+24=\left(-3z+12\right)z
Use the distributive property to multiply -3 by z-4.
-8z+24=-3z^{2}+12z
Use the distributive property to multiply -3z+12 by z.
-8z+24+3z^{2}=12z
Add 3z^{2} to both sides.
-8z+24+3z^{2}-12z=0
Subtract 12z from both sides.
-20z+24+3z^{2}=0
Combine -8z and -12z to get -20z.
-20z+3z^{2}=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
3z^{2}-20z=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3z^{2}-20z}{3}=-\frac{24}{3}
Divide both sides by 3.
z^{2}-\frac{20}{3}z=-\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
z^{2}-\frac{20}{3}z=-8
Divide -24 by 3.
z^{2}-\frac{20}{3}z+\left(-\frac{10}{3}\right)^{2}=-8+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{20}{3}z+\frac{100}{9}=-8+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{20}{3}z+\frac{100}{9}=\frac{28}{9}
Add -8 to \frac{100}{9}.
\left(z-\frac{10}{3}\right)^{2}=\frac{28}{9}
Factor z^{2}-\frac{20}{3}z+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{10}{3}\right)^{2}}=\sqrt{\frac{28}{9}}
Take the square root of both sides of the equation.
z-\frac{10}{3}=\frac{2\sqrt{7}}{3} z-\frac{10}{3}=-\frac{2\sqrt{7}}{3}
Simplify.
z=\frac{2\sqrt{7}+10}{3} z=\frac{10-2\sqrt{7}}{3}
Add \frac{10}{3} to both sides of the equation.