Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
-30x^{2}+85x-60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-85±\sqrt{85^{2}-4\left(-30\right)\left(-60\right)}}{2\left(-30\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30 for a, 85 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-85±\sqrt{7225-4\left(-30\right)\left(-60\right)}}{2\left(-30\right)}
Square 85.
x=\frac{-85±\sqrt{7225+120\left(-60\right)}}{2\left(-30\right)}
Multiply -4 times -30.
x=\frac{-85±\sqrt{7225-7200}}{2\left(-30\right)}
Multiply 120 times -60.
x=\frac{-85±\sqrt{25}}{2\left(-30\right)}
Add 7225 to -7200.
x=\frac{-85±5}{2\left(-30\right)}
Take the square root of 25.
x=\frac{-85±5}{-60}
Multiply 2 times -30.
x=-\frac{80}{-60}
Now solve the equation x=\frac{-85±5}{-60} when ± is plus. Add -85 to 5.
x=\frac{4}{3}
Reduce the fraction \frac{-80}{-60} to lowest terms by extracting and canceling out 20.
x=-\frac{90}{-60}
Now solve the equation x=\frac{-85±5}{-60} when ± is minus. Subtract 5 from -85.
x=\frac{3}{2}
Reduce the fraction \frac{-90}{-60} to lowest terms by extracting and canceling out 30.
x=\frac{4}{3} x=\frac{3}{2}
The equation is now solved.
-30x^{2}+85x-60=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-30x^{2}+85x-60-\left(-60\right)=-\left(-60\right)
Add 60 to both sides of the equation.
-30x^{2}+85x=-\left(-60\right)
Subtracting -60 from itself leaves 0.
-30x^{2}+85x=60
Subtract -60 from 0.
\frac{-30x^{2}+85x}{-30}=\frac{60}{-30}
Divide both sides by -30.
x^{2}+\frac{85}{-30}x=\frac{60}{-30}
Dividing by -30 undoes the multiplication by -30.
x^{2}-\frac{17}{6}x=\frac{60}{-30}
Reduce the fraction \frac{85}{-30} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{17}{6}x=-2
Divide 60 by -30.
x^{2}-\frac{17}{6}x+\left(-\frac{17}{12}\right)^{2}=-2+\left(-\frac{17}{12}\right)^{2}
Divide -\frac{17}{6}, the coefficient of the x term, by 2 to get -\frac{17}{12}. Then add the square of -\frac{17}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{6}x+\frac{289}{144}=-2+\frac{289}{144}
Square -\frac{17}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{6}x+\frac{289}{144}=\frac{1}{144}
Add -2 to \frac{289}{144}.
\left(x-\frac{17}{12}\right)^{2}=\frac{1}{144}
Factor x^{2}-\frac{17}{6}x+\frac{289}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Take the square root of both sides of the equation.
x-\frac{17}{12}=\frac{1}{12} x-\frac{17}{12}=-\frac{1}{12}
Simplify.
x=\frac{3}{2} x=\frac{4}{3}
Add \frac{17}{12} to both sides of the equation.
x ^ 2 -\frac{17}{6}x +2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{17}{6} rs = 2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{12} - u s = \frac{17}{12} + u
Two numbers r and s sum up to \frac{17}{6} exactly when the average of the two numbers is \frac{1}{2}*\frac{17}{6} = \frac{17}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{12} - u) (\frac{17}{12} + u) = 2
To solve for unknown quantity u, substitute these in the product equation rs = 2
\frac{289}{144} - u^2 = 2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 2-\frac{289}{144} = -\frac{1}{144}
Simplify the expression by subtracting \frac{289}{144} on both sides
u^2 = \frac{1}{144} u = \pm\sqrt{\frac{1}{144}} = \pm \frac{1}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{12} - \frac{1}{12} = 1.333 s = \frac{17}{12} + \frac{1}{12} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}