Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-30x^{2}+18x-3000=150
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-30x^{2}+18x-3000-150=150-150
Subtract 150 from both sides of the equation.
-30x^{2}+18x-3000-150=0
Subtracting 150 from itself leaves 0.
-30x^{2}+18x-3150=0
Subtract 150 from -3000.
x=\frac{-18±\sqrt{18^{2}-4\left(-30\right)\left(-3150\right)}}{2\left(-30\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30 for a, 18 for b, and -3150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\left(-30\right)\left(-3150\right)}}{2\left(-30\right)}
Square 18.
x=\frac{-18±\sqrt{324+120\left(-3150\right)}}{2\left(-30\right)}
Multiply -4 times -30.
x=\frac{-18±\sqrt{324-378000}}{2\left(-30\right)}
Multiply 120 times -3150.
x=\frac{-18±\sqrt{-377676}}{2\left(-30\right)}
Add 324 to -378000.
x=\frac{-18±6\sqrt{10491}i}{2\left(-30\right)}
Take the square root of -377676.
x=\frac{-18±6\sqrt{10491}i}{-60}
Multiply 2 times -30.
x=\frac{-18+6\sqrt{10491}i}{-60}
Now solve the equation x=\frac{-18±6\sqrt{10491}i}{-60} when ± is plus. Add -18 to 6i\sqrt{10491}.
x=\frac{-\sqrt{10491}i+3}{10}
Divide -18+6i\sqrt{10491} by -60.
x=\frac{-6\sqrt{10491}i-18}{-60}
Now solve the equation x=\frac{-18±6\sqrt{10491}i}{-60} when ± is minus. Subtract 6i\sqrt{10491} from -18.
x=\frac{3+\sqrt{10491}i}{10}
Divide -18-6i\sqrt{10491} by -60.
x=\frac{-\sqrt{10491}i+3}{10} x=\frac{3+\sqrt{10491}i}{10}
The equation is now solved.
-30x^{2}+18x-3000=150
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-30x^{2}+18x-3000-\left(-3000\right)=150-\left(-3000\right)
Add 3000 to both sides of the equation.
-30x^{2}+18x=150-\left(-3000\right)
Subtracting -3000 from itself leaves 0.
-30x^{2}+18x=3150
Subtract -3000 from 150.
\frac{-30x^{2}+18x}{-30}=\frac{3150}{-30}
Divide both sides by -30.
x^{2}+\frac{18}{-30}x=\frac{3150}{-30}
Dividing by -30 undoes the multiplication by -30.
x^{2}-\frac{3}{5}x=\frac{3150}{-30}
Reduce the fraction \frac{18}{-30} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{3}{5}x=-105
Divide 3150 by -30.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=-105+\left(-\frac{3}{10}\right)^{2}
Divide -\frac{3}{5}, the coefficient of the x term, by 2 to get -\frac{3}{10}. Then add the square of -\frac{3}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-105+\frac{9}{100}
Square -\frac{3}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{5}x+\frac{9}{100}=-\frac{10491}{100}
Add -105 to \frac{9}{100}.
\left(x-\frac{3}{10}\right)^{2}=-\frac{10491}{100}
Factor x^{2}-\frac{3}{5}x+\frac{9}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{-\frac{10491}{100}}
Take the square root of both sides of the equation.
x-\frac{3}{10}=\frac{\sqrt{10491}i}{10} x-\frac{3}{10}=-\frac{\sqrt{10491}i}{10}
Simplify.
x=\frac{3+\sqrt{10491}i}{10} x=\frac{-\sqrt{10491}i+3}{10}
Add \frac{3}{10} to both sides of the equation.