Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

-30k+23k^{2}=0
Add 23k^{2} to both sides.
k\left(-30+23k\right)=0
Factor out k.
k=0 k=\frac{30}{23}
To find equation solutions, solve k=0 and -30+23k=0.
-30k+23k^{2}=0
Add 23k^{2} to both sides.
23k^{2}-30k=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}}}{2\times 23}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 23 for a, -30 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-30\right)±30}{2\times 23}
Take the square root of \left(-30\right)^{2}.
k=\frac{30±30}{2\times 23}
The opposite of -30 is 30.
k=\frac{30±30}{46}
Multiply 2 times 23.
k=\frac{60}{46}
Now solve the equation k=\frac{30±30}{46} when ± is plus. Add 30 to 30.
k=\frac{30}{23}
Reduce the fraction \frac{60}{46} to lowest terms by extracting and canceling out 2.
k=\frac{0}{46}
Now solve the equation k=\frac{30±30}{46} when ± is minus. Subtract 30 from 30.
k=0
Divide 0 by 46.
k=\frac{30}{23} k=0
The equation is now solved.
-30k+23k^{2}=0
Add 23k^{2} to both sides.
23k^{2}-30k=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{23k^{2}-30k}{23}=\frac{0}{23}
Divide both sides by 23.
k^{2}-\frac{30}{23}k=\frac{0}{23}
Dividing by 23 undoes the multiplication by 23.
k^{2}-\frac{30}{23}k=0
Divide 0 by 23.
k^{2}-\frac{30}{23}k+\left(-\frac{15}{23}\right)^{2}=\left(-\frac{15}{23}\right)^{2}
Divide -\frac{30}{23}, the coefficient of the x term, by 2 to get -\frac{15}{23}. Then add the square of -\frac{15}{23} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}-\frac{30}{23}k+\frac{225}{529}=\frac{225}{529}
Square -\frac{15}{23} by squaring both the numerator and the denominator of the fraction.
\left(k-\frac{15}{23}\right)^{2}=\frac{225}{529}
Factor k^{2}-\frac{30}{23}k+\frac{225}{529}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-\frac{15}{23}\right)^{2}}=\sqrt{\frac{225}{529}}
Take the square root of both sides of the equation.
k-\frac{15}{23}=\frac{15}{23} k-\frac{15}{23}=-\frac{15}{23}
Simplify.
k=\frac{30}{23} k=0
Add \frac{15}{23} to both sides of the equation.