Solve for a
a=\left(-\frac{25}{1832}-\frac{5}{2748}i\right)z+\left(-\frac{555}{1832}-\frac{37}{916}i\right)
Solve for z
z=\left(-72+\frac{48}{5}i\right)a-\frac{111}{5}
Share
Copied to clipboard
60z=-4320a-36\left(37-16ia\right)
Multiply both sides of the equation by -20.
-4320a-36\left(37-16ia\right)=60z
Swap sides so that all variable terms are on the left hand side.
-4320a-1332+576ia=60z
Use the distributive property to multiply -36 by 37-16ia.
\left(-4320+576i\right)a-1332=60z
Combine -4320a and 576ia to get \left(-4320+576i\right)a.
\left(-4320+576i\right)a=60z+1332
Add 1332 to both sides.
\frac{\left(-4320+576i\right)a}{-4320+576i}=\frac{60z+1332}{-4320+576i}
Divide both sides by -4320+576i.
a=\frac{60z+1332}{-4320+576i}
Dividing by -4320+576i undoes the multiplication by -4320+576i.
a=\left(-\frac{25}{1832}-\frac{5}{2748}i\right)z+\left(-\frac{555}{1832}-\frac{37}{916}i\right)
Divide 60z+1332 by -4320+576i.
60z=-4320a-36\left(37-16ia\right)
Multiply both sides of the equation by -20.
60z=-4320a-1332+576ia
Use the distributive property to multiply -36 by 37-16ia.
60z=\left(-4320+576i\right)a-1332
Combine -4320a and 576ia to get \left(-4320+576i\right)a.
\frac{60z}{60}=\frac{\left(-4320+576i\right)a-1332}{60}
Divide both sides by 60.
z=\frac{\left(-4320+576i\right)a-1332}{60}
Dividing by 60 undoes the multiplication by 60.
z=\left(-72+\frac{48}{5}i\right)a-\frac{111}{5}
Divide \left(-4320+576i\right)a-1332 by 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}