Evaluate
y\left(y-1\right)\left(3y+1\right)
Factor
y\left(y-1\right)\left(3y+1\right)
Graph
Share
Copied to clipboard
4y+4y^{3}-2y^{2}+6y^{3}-7y^{3}-5y
Combine -3y and 7y to get 4y.
4y+10y^{3}-2y^{2}-7y^{3}-5y
Combine 4y^{3} and 6y^{3} to get 10y^{3}.
4y+3y^{3}-2y^{2}-5y
Combine 10y^{3} and -7y^{3} to get 3y^{3}.
-y+3y^{3}-2y^{2}
Combine 4y and -5y to get -y.
y\left(-1+3y^{2}-2y\right)
Factor out y.
3y^{2}-2y-1
Consider -3+7+4y^{2}-2y+6y^{2}-7y^{2}-5. Multiply and combine like terms.
a+b=-2 ab=3\left(-1\right)=-3
Consider 3y^{2}-2y-1. Factor the expression by grouping. First, the expression needs to be rewritten as 3y^{2}+ay+by-1. To find a and b, set up a system to be solved.
a=-3 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(3y^{2}-3y\right)+\left(y-1\right)
Rewrite 3y^{2}-2y-1 as \left(3y^{2}-3y\right)+\left(y-1\right).
3y\left(y-1\right)+y-1
Factor out 3y in 3y^{2}-3y.
\left(y-1\right)\left(3y+1\right)
Factor out common term y-1 by using distributive property.
y\left(y-1\right)\left(3y+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}