Solve for x
x\leq -\frac{27}{14}
Graph
Share
Copied to clipboard
-3x-9-\frac{1}{9}x\geq -3
Subtract \frac{1}{9}x from both sides.
-\frac{28}{9}x-9\geq -3
Combine -3x and -\frac{1}{9}x to get -\frac{28}{9}x.
-\frac{28}{9}x\geq -3+9
Add 9 to both sides.
-\frac{28}{9}x\geq 6
Add -3 and 9 to get 6.
x\leq 6\left(-\frac{9}{28}\right)
Multiply both sides by -\frac{9}{28}, the reciprocal of -\frac{28}{9}. Since -\frac{28}{9} is negative, the inequality direction is changed.
x\leq \frac{6\left(-9\right)}{28}
Express 6\left(-\frac{9}{28}\right) as a single fraction.
x\leq \frac{-54}{28}
Multiply 6 and -9 to get -54.
x\leq -\frac{27}{14}
Reduce the fraction \frac{-54}{28} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}