Solve for x
x=\frac{1}{3}-2y
Solve for y
y=-\frac{x}{2}+\frac{1}{6}
Graph
Share
Copied to clipboard
-3x+1=6y
Add 6y to both sides. Anything plus zero gives itself.
-3x=6y-1
Subtract 1 from both sides.
\frac{-3x}{-3}=\frac{6y-1}{-3}
Divide both sides by -3.
x=\frac{6y-1}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{1}{3}-2y
Divide 6y-1 by -3.
-6y+1=3x
Add 3x to both sides. Anything plus zero gives itself.
-6y=3x-1
Subtract 1 from both sides.
\frac{-6y}{-6}=\frac{3x-1}{-6}
Divide both sides by -6.
y=\frac{3x-1}{-6}
Dividing by -6 undoes the multiplication by -6.
y=-\frac{x}{2}+\frac{1}{6}
Divide 3x-1 by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}