Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(-x-10+2x^{2}\right)
Factor out 3.
2x^{2}-x-10
Consider -x-10+2x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-1 ab=2\left(-10\right)=-20
Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-20 2,-10 4,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -20.
1-20=-19 2-10=-8 4-5=-1
Calculate the sum for each pair.
a=-5 b=4
The solution is the pair that gives sum -1.
\left(2x^{2}-5x\right)+\left(4x-10\right)
Rewrite 2x^{2}-x-10 as \left(2x^{2}-5x\right)+\left(4x-10\right).
x\left(2x-5\right)+2\left(2x-5\right)
Factor out x in the first and 2 in the second group.
\left(2x-5\right)\left(x+2\right)
Factor out common term 2x-5 by using distributive property.
3\left(2x-5\right)\left(x+2\right)
Rewrite the complete factored expression.
6x^{2}-3x-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-30\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-30\right)}}{2\times 6}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-24\left(-30\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-3\right)±\sqrt{9+720}}{2\times 6}
Multiply -24 times -30.
x=\frac{-\left(-3\right)±\sqrt{729}}{2\times 6}
Add 9 to 720.
x=\frac{-\left(-3\right)±27}{2\times 6}
Take the square root of 729.
x=\frac{3±27}{2\times 6}
The opposite of -3 is 3.
x=\frac{3±27}{12}
Multiply 2 times 6.
x=\frac{30}{12}
Now solve the equation x=\frac{3±27}{12} when ± is plus. Add 3 to 27.
x=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x=-\frac{24}{12}
Now solve the equation x=\frac{3±27}{12} when ± is minus. Subtract 27 from 3.
x=-2
Divide -24 by 12.
6x^{2}-3x-30=6\left(x-\frac{5}{2}\right)\left(x-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and -2 for x_{2}.
6x^{2}-3x-30=6\left(x-\frac{5}{2}\right)\left(x+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
6x^{2}-3x-30=6\times \frac{2x-5}{2}\left(x+2\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
6x^{2}-3x-30=3\left(2x-5\right)\left(x+2\right)
Cancel out 2, the greatest common factor in 6 and 2.