Solve for x
x = -\frac{62}{45} = -1\frac{17}{45} \approx -1.377777778
Graph
Share
Copied to clipboard
-3x-\frac{1}{2}x-\frac{1}{3}=4x+10
To find the opposite of \frac{1}{2}x+\frac{1}{3}, find the opposite of each term.
-\frac{7}{2}x-\frac{1}{3}=4x+10
Combine -3x and -\frac{1}{2}x to get -\frac{7}{2}x.
-\frac{7}{2}x-\frac{1}{3}-4x=10
Subtract 4x from both sides.
-\frac{15}{2}x-\frac{1}{3}=10
Combine -\frac{7}{2}x and -4x to get -\frac{15}{2}x.
-\frac{15}{2}x=10+\frac{1}{3}
Add \frac{1}{3} to both sides.
-\frac{15}{2}x=\frac{30}{3}+\frac{1}{3}
Convert 10 to fraction \frac{30}{3}.
-\frac{15}{2}x=\frac{30+1}{3}
Since \frac{30}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
-\frac{15}{2}x=\frac{31}{3}
Add 30 and 1 to get 31.
x=\frac{31}{3}\left(-\frac{2}{15}\right)
Multiply both sides by -\frac{2}{15}, the reciprocal of -\frac{15}{2}.
x=\frac{31\left(-2\right)}{3\times 15}
Multiply \frac{31}{3} times -\frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-62}{45}
Do the multiplications in the fraction \frac{31\left(-2\right)}{3\times 15}.
x=-\frac{62}{45}
Fraction \frac{-62}{45} can be rewritten as -\frac{62}{45} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}