Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-8 ab=-3\times 3=-9
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
1,-9 3,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -9.
1-9=-8 3-3=0
Calculate the sum for each pair.
a=1 b=-9
The solution is the pair that gives sum -8.
\left(-3x^{2}+x\right)+\left(-9x+3\right)
Rewrite -3x^{2}-8x+3 as \left(-3x^{2}+x\right)+\left(-9x+3\right).
-x\left(3x-1\right)-3\left(3x-1\right)
Factor out -x in the first and -3 in the second group.
\left(3x-1\right)\left(-x-3\right)
Factor out common term 3x-1 by using distributive property.
-3x^{2}-8x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-8\right)±\sqrt{64+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-\left(-8\right)±\sqrt{100}}{2\left(-3\right)}
Add 64 to 36.
x=\frac{-\left(-8\right)±10}{2\left(-3\right)}
Take the square root of 100.
x=\frac{8±10}{2\left(-3\right)}
The opposite of -8 is 8.
x=\frac{8±10}{-6}
Multiply 2 times -3.
x=\frac{18}{-6}
Now solve the equation x=\frac{8±10}{-6} when ± is plus. Add 8 to 10.
x=-3
Divide 18 by -6.
x=-\frac{2}{-6}
Now solve the equation x=\frac{8±10}{-6} when ± is minus. Subtract 10 from 8.
x=\frac{1}{3}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out 2.
-3x^{2}-8x+3=-3\left(x-\left(-3\right)\right)\left(x-\frac{1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and \frac{1}{3} for x_{2}.
-3x^{2}-8x+3=-3\left(x+3\right)\left(x-\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-3x^{2}-8x+3=-3\left(x+3\right)\times \frac{-3x+1}{-3}
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-3x^{2}-8x+3=\left(x+3\right)\left(-3x+1\right)
Cancel out 3, the greatest common factor in -3 and 3.
x ^ 2 +\frac{8}{3}x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = -\frac{8}{3} rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{4}{3} - u s = -\frac{4}{3} + u
Two numbers r and s sum up to -\frac{8}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{8}{3} = -\frac{4}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{4}{3} - u) (-\frac{4}{3} + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
\frac{16}{9} - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-\frac{16}{9} = -\frac{25}{9}
Simplify the expression by subtracting \frac{16}{9} on both sides
u^2 = \frac{25}{9} u = \pm\sqrt{\frac{25}{9}} = \pm \frac{5}{3}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{4}{3} - \frac{5}{3} = -3 s = -\frac{4}{3} + \frac{5}{3} = 0.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.